ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Highlights • Code comparisons build confidence in simulators to model interdependent processes. • International hydrate reservoir simulators are compared over five complex problems. • Geomechanical processes significantly impact response of gas hydrate reservoirs. • Simulators yielded comparable results, however many differences are noted. • Equivalent constitutive models are required to achieve agreement across simulators. Geologic reservoirs containing gas hydrate occur beneath permafrost environments and within marine continental slope sediments, representing a potentially vast natural gas source. Numerical simulators provide scientists and engineers with tools for understanding how production efficiency depends on the numerous, interdependent (coupled) processes associated with potential production strategies for these gas hydrate reservoirs. Confidence in the modeling and forecasting abilities of these gas hydrate reservoir simulators (GHRSs) grows with successful comparisons against laboratory and field test results, but such results are rare, particularly in natural settings. The hydrate community recognized another approach to building confidence in the GHRS: comparing simulation results between independently developed and executed computer codes on structured problems specifically tailored to the interdependent processes relevant for gas hydrate-bearing systems. The United States Department of Energy, National Energy Technology Laboratory, (DOE/NETL), sponsored the first international gas hydrate code comparison study, IGHCCS1, in the early 2000s. IGHCCS1 focused on coupled thermal and hydrologic processes associated with producing gas hydrates from geologic reservoirs via depressurization and thermal stimulation. Subsequently, GHRSs have advanced to model more complex production technologies and incorporate geomechanical processes into the existing framework of coupled thermal and hydrologic modeling. This paper contributes to the validation of these recent GHRS developments by providing results from a second GHRS code comparison study, IGHCCS2, also sponsored by DOE/NETL. IGHCCS2 includes participants from an international collection of universities, research institutes, industry, national laboratories, and national geologic surveys. Study participants developed a series of five benchmark problems principally involving gas hydrate processes with geomechanical components. The five problems range from simple geometries with analytical solutions to a representation of the world's first offshore production test of methane hydrates, which was conducted with the depressurization method off the coast of Japan. To identify strengths and limitations in the various GHRSs, study participants submitted solutions for the benchmark problems and discussed differing results via teleconferences. The GHRSs evolved over the course of IGHCCS2 as researchers modified their simulators to reflect new insights, lessons learned, and suggested performance enhancements. The five benchmark problems, final sample solutions, and lessons learned that are presented here document the study outcomes and serve as a reference guide for developing and testing gas hydrate reservoir simulators.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. These fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner Pockmark Complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multifrequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...