ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (9)
  • Wiley  (6)
  • Copernicus Publications (EGU)  (2)
  • Copernicus
  • 2020-2024  (17)
  • 1
    Publication Date: 2023-02-08
    Description: Back‐arc basins open in response to subduction processes, which cause extension in the upper plate, usually along trench‐parallel spreading axes. However, global seismic databases reveal that the majority of seismic events in the Lau Basin occur along transcurrent (strike‐slip) rather than extensional faults. To better characterize active deformation in this region we compared Centroid Moment Tensors (CMTs), calculated for large (Mw 〉5), shallow (〈30 km) seismic events to the orientations of seafloor lineaments mapped throughout the Lau Basin. Ship‐based multibeam was combined with vertical gravity gradient data to provide comprehensive coverage to create the lineament map. By comparing the possible focal planes of the CMTs to the orientations of the lineaments, the most likely fault plane solutions were selected, thus classifying the faults and establishing the nature of the highly variable stress regimes in the basin. We resolved the strike, dip and dip direction of 308 faults, and classified 258 additional structures by fault type. The analysis highlights a stress regime that is dominated by a combination of left‐lateral and right‐lateral strike‐slip faults, large‐scale transcurrent motion along rigid crustal‐scale fault zones, and non‐rigid diffuse deformation along pre‐existing seafloor structures, with extension mainly limited to the tips of propagating rifts and spreading centers. By resolving many of the uncertain motions on the mapped lineaments of the Lau Basin, the CMT analysis addresses a number of questions concerning basin‐scale stress regimes and microplate development, complementing GPS measurements and providing a more complete picture of the complexities of back‐arc basin development.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m−2, or -2.0 to -0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds. Key Points: - An assessment of multiple lines of evidence supported by a conceptual model provides ranges for aerosol radiative forcing of climate change - Aerosol effective radiative forcing is assessed to be between -1.6 and -0.6 W m−2 at the 16–84% confidence level - Although key uncertainties remain, new ways of using observations provide stronger constraints for models
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Exchange of dissolved substances at the sediment–water interface provides an important link between the short–term and long–term geochemical cycles in the ocean. A second, as yet poorly understood sediment–water exchange is supported by low–temperature circulation of seawater through the oceanic basement underneath the sediments. From the basement, upwards diffusing oxygen and other dissolved species modify the sediment whereas reaction products diffuse from the sediment down into the basement, where they are transported by the basement fluid and released to the ocean. Here, we investigate the impact of this “second” route with respect to transport, release and consumption of oxygen, nitrate, manganese, nickel, and cobalt on the basis of sediment cores retrieved from the Clarion Clipperton Zone (CCZ) in the equatorial Pacific Ocean. We show that in this abyssal ocean region characterised by low organic–carbon burial and sedimentation rates vast areas exist where the downward and upward directed diffusive fluxes of oxygen meet so that the sediments are oxic throughout. This is especially the case where sediments are thin or in the proximity of faults. Oxygen diffusing upward from the basaltic crust into the sediment contributes to the degradation of sedimentary organic matter. Where the oxygen profiles do not meet, they are separated by a suboxic sediment interval characterised by Mn2+ in the pore–water. Where the sediments are entirely oxic, nitrate produced in the upper sediment by nitrification is lost both by upward diffusion into the bottom water and by downward diffusion into the fluids circulating within the basement. Where pore–water manganese in the suboxic zones remains low, nitrate consumption is low and the sediment continues to deliver nitrate to the ocean bottom waters and basement fluid. We observe that at elevated pore–water manganese concentrations, nitrate consumption exceeds production and the basement becomes a nitrate source. Within the suboxic zone, not only manganese but also cobalt and nickel are released into the pore–water by reduction of oxides, diffuse towards the oxic/suboxic fronts above and below where they precipitate, effectively removing these metals from the suboxic zone and concentrating them at the oxic/suboxic redox boundaries. We show that not only diffusive fluxes in the top part of deep–sea sediments modify the geochemical composition over time, but also diffusive fluxes of dissolved constituents from the basement into the bottom layers of the sediment. Hence, paleoceanographic interpretation of sedimentary layers should carefully consider such deep secondary modifications in order to prevent misinterpretation as primary signatures.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-29
    Description: Understanding the spatial distribution of metals within galaxies allows us to study the processes of chemical enrichment and mixing in the interstellar medium (ISM). In this work, we map the two-dimensional distribution of metals using a Gaussian Process Regression (GPR) for 19 star-forming galaxies observed with the Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT–MUSE) as part of the PHANGS–MUSE survey. We find that 12 of our 19 galaxies show significant two-dimensional metallicity variation. Those without significant variations typically have fewer metallicity measurements, indicating this is due to the dearth of H ii regions in these galaxies, rather than a lack of higher-order variation. After subtracting a linear radial gradient, we see no enrichment in the spiral arms versus the disc. We measure the 50 per cent correlation scale from the two-point correlation function of these radially-subtracted maps, finding it to typically be an order of magnitude smaller than the fitted GPR kernel scale length. We study the dependence of the two-point correlation scale length with a number of global galaxy properties. We find no relationship between the 50 per cent correlation scale and the overall gas turbulence, in tension with existing theoretical models. We also find more actively star forming galaxies, and earlier type galaxies have a larger 50 per cent correlation scale. The size and stellar mass surface density do not appear to correlate with the 50 per cent correlation scale, indicating that perhaps the evolutionary state of the galaxy and its current star formation activity is the strongest indicator of the homogeneity of the metal distribution.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Print ISSN: 1936-0584
    Electronic ISSN: 1936-0592
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-25
    Description: Relativistic magnetic reconnection is a powerful agent through which magnetic energy can be tapped in astrophysics, energizing particles that then produce observed radiation. In some systems, the highest energy photons come from particles Comptonizing an ambient radiation bath supplied by an external source. If the emitting particle energies are high enough, this inverse Compton (IC) scattering enters the Klein–Nishina regime, which differs from the low-energy Thomson IC limit in two significant ways. First, radiative losses become inherently discrete, with particles delivering an order-unity fraction of their energies to single photons. Secondly, Comptonized photons may pair produce with the ambient radiation, opening up another channel for radiative feedback on magnetic reconnection. We analytically study externally illuminated highly magnetized reconnecting systems for which both of these effects are important. We identify a universal (initial magnetization-independent) quasi-steady state in which gamma-rays emitted from the reconnection layer are absorbed in the upstream region, and the resulting hot pairs dominate the energy density of the inflow plasma. However, a true pair cascade is unlikely, and the number density of created pairs remains subdominant to that of the original plasma for a wide parameter range. Future particle-in-cell simulation studies may test various aspects. Pair-regulated Klein–Nishina reconnection may explain steep spectra (quiescent and flaring) from flat-spectrum radio quasars and black hole accretion disc coronae.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-25
    Description: Integral field units enable resolved studies of a large number of star-forming regions across entire nearby galaxies, providing insight on the conversion of gas into stars and the feedback from the emerging stellar populations over unprecedented dynamic ranges in terms of spatial scale, star-forming region properties, and environments. We use the Very Large Telescope (VLT) MUSE (Multi Unit Spectroscopic Explorer) legacy data set covering the central 35 arcmin2 (∼12 kpc2) of the nearby galaxy NGC 300 to quantify the effect of stellar feedback as a function of the local galactic environment. We extract spectra from emission line regions identified within dendrograms, combine emission line ratios and line widths to distinguish between ${ m H, small {II}}$ regions, planetary nebulae, and supernova remnants, and compute their ionized gas properties, gas-phase oxygen abundances, and feedback-related pressure terms. For the ${ m H, small {II}}$ regions, we find that the direct radiation pressure (Pdir) and the pressure of the ionized gas ($P_{{ m H, small {II}}}$) weakly increase towards larger galactocentric radii, i.e. along the galaxy’s (negative) abundance and (positive) extinction gradients. While the increase of $P_{{ m H, small {II}}}$ with galactocentric radius is likely due to higher photon fluxes from lower-metallicity stellar populations, we find that the increase of Pdir is likely driven by the combination of higher photon fluxes and enhanced dust content at larger galactocentric radii. In light of the above, we investigate the effect of increased pre-supernova feedback at larger galactocentric distances (lower metallicities and increased dust mass surface density) on the ISM, finding that supernovae at lower metallicities expand into lower-density environments, thereby enhancing the impact of supernova feedback.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-19
    Description: The feedback from young stars (i.e. pre-supernova) is thought to play a crucial role in molecular cloud destruction. In this paper, we assess the feedback mechanisms acting within a sample of 5810 H ii regions identified from the PHANGS-MUSE survey of 19 nearby ( 1, and expanding, yet there is a small sample of compact H ii regions with Ptot,max/Pde 〈 1 (∼1 per cent of the sample). These mostly reside in galaxy centres (Rgal 〈 1 kpc), or, specifically, environments of high gas surface density; log(Σgas/M⊙ pc−2) ∼ 2.5 (measured on kpc-scales). Lastly, we compare to a sample of literature measurements for Ptherm and Prad to investigate how dominant pressure term transitions over around 5 dex in spatial dynamic range and 10 dex in pressure.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-18
    Description: The increase in detector sensitivity and availability in the past three decades has allowed us to derive knowledge of the meteoroid flux and impact energy into the Earth’s atmosphere. We present the multi-instrument detected 2018 December 22 fireball over Western Pyrenees, and compare several techniques aiming to obtain a reliable method to be used when measuring impacts of similar scale. From trajectory data alone, we found a bulk density of 3.5 g cm−3 to be the most likely value for the Pyrenean meteoroid. This allowed to further constrain the dynamic mass, which translated into a kinetic energy of 1 ton TNT (4.184 × 109 J). For the second energy derivation, via the fireball’s corrected optical radiation, we obtained a more accurate empirical relation measuring well-studied bolides. The result approximates to 1.1 ton TNT, which is notably close to the nominal dynamic result, and agrees with the lower margin of the seismic-based energy estimation, yet way lower than the infrasound estimate. Based on the relation derived in this study, we consider the nominal estimate from both the dynamic and photometric methods to be the most accurate value of deposited energy (1 ton TNT). We show that the combination of these two methods can be used to infer the meteoroid density. Among the methods presented in this paper, we found that the optical energy is the most reliable predictor of impact energy near the ton TNT-scale.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-27
    Description: Summary In an attempt to overcome the difficulties of the full waveform inversion (FWI), several alternative objective functions have been proposed over the last few years. Many of them are based on the assumption that the residuals (differences between modelled and observed seismic data) follow specific probability distributions when, in fact, the true probability distribution is unknown. This leads FWI to converge to an incorrect probability distribution if the assumed probability distribution is different from the real one and, consequently it may lead the FWI to achieve biased models of the subsurface. In this work, we propose an objective function which does not force the residuals to follow a specific probability distribution. Instead, we propose to use the non-parametric kernel density estimation technique (KDE) (which imposes the least possible assumptions about the residuals) to explore the probability distribution that may be more suitable. As evidenced by the results obtained in a synthetic model and in a typical P-wave velocity model of the Brazilian pre-salt fields, the proposed FWI reveals a greater potential to overcome more adverse situations (such as cycle-skipping) and also a lower sensitivity to noise in the observed data than conventional L2 and L1-norm objective functions and thus making it possible to obtain more accurate models of the subsurface. This greater potential is also illustrated by the smoother and less sinuous shape of the proposed objective function with fewer local minima compared with the conventional objective functions.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...