ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (60)
  • American Physical Society
  • 2020-2024  (60)
Collection
Keywords
Year
  • 1
    Publication Date: 2023-02-12
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in the surrounding and within different wind farms of the German Bight in April 2018. The sediment samples were taken by a box grab and analyzed for their grain size distribution by laser diffraction.
    Keywords: AT261; Atair; Atair261; Atair261_10_BC; Atair261_11_BC; Atair261_13_BC; Atair261_14_BC; Atair261_15_BC; Atair261_16_BC; Atair261_17_BC; Atair261_2_BC; Atair261_20_BC; Atair261_21_BC; Atair261_22_BC; Atair261_23_BC; Atair261_24_BC; Atair261_25_BC; Atair261_27_BC; Atair261_29_BC; Atair261_3_BC; Atair261_30_BC; Atair261_31_BC; Atair261_32_BC; Atair261_33_BC; Atair261_34_BC; Atair261_35_BC; Atair261_36_BC; Atair261_37_BC; Atair261_38_BC; Atair261_39_BC; Atair261_4_BC; Atair261_40_BC; Atair261_41_BC; Atair261_42_BC; Atair261_43_BC; Atair261_44_BC; Atair261_46_BC; Atair261_47_BC; Atair261_48_BC; Atair261_49_BC; Atair261_50_BC; Atair261_51_BC; Atair261_52_BC; Atair261_53_BC; Atair261_54_BC; Atair261_55_BC; Atair261_56_BC; Atair261_57_BC; Atair261_58_BC; Atair261_59_BC; Atair261_60_BC; Atair261_61_BC; Atair261_62_BC; Atair261_63_BC; Atair261_9_BC; BC; Box corer; Date/Time of event; DEPTH, sediment/rock; Elevation of event; Event label; German Bight; Helmholtz-Zentrum Hereon; Hereon; Laser diffraction particle size analyser; Latitude of event; Longitude of event; Sample ID; Size fraction 〈 0.020 mm; Size fraction 〈 0.063 mm, mud, silt+clay; Size fraction 〈 0.125 mm; Size fraction 〈 0.250 mm; Station_10_HELW3; Station_11_NOST1; Station_13_NOST3; Station_14_NOST4; Station_15_NOST5; Station_16_NOST6; Station_17_NOST7; Station_2_TI7; Station_20_AMWE2; Station_21_AMWE3; Station_22_AMWE4; Station_23_AMWE5; Station_24_AMWE6; Station_25_AMWE7; Station_27_AMWE9; Station_29_DOLW1; Station_3_MEWI1; Station_30_DOLW2; Station_31_DOLW3; Station_32_BKRI1; Station_33_BKRI2; Station_34_BKRI3; Station_35_BKRI4; Station_36_BKRI5; Station_37_ALVE2; Station_38_ALVE3; Station_39_ALVE1; Station_4_MEWI3; Station_40_ALVE4; Station_41_DOLW5; Station_42_DOLW6; Station_43_GOWI2; Station_44_GOWI3; Station_46_GOWI6; Station_47_GOWI7; Station_48_GOWI8; Station_49_GOWI9; Station_50_GOWI1; Station_51_GOWI4; Station_52_GOWI10; Station_53_GOWI11; Station_54_GOWI20; Station_55_GOWI21; Station_56_GOWI22; Station_57_GOWI23; Station_58_GOWI24; Station_59_GOWI25; Station_60_GOWI26; Station_61_GOWI27; Station_62_GOWI28; Station_63_GOWI29; Station_9_HELW2; Station label
    Type: Dataset
    Format: text/tab-separated-values, 312 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-14
    Description: A literature retrieval was performed for whole rock geochemical analyses of sedimentary, magmatic and metamorphic rocks in the catchment of River Thuringian Saale for the past 600 Ma. Considering availability and coincidence with paleontological an facies data the following indicators seem suitable to detect environmental and climatic changes: biogenic P for Paleoproductivity, STI Index for weathering intensity, Ni/Co-ratio for redox conditions, relative enrichments of Co, Ba and Rb versus crustal values for volcanic activity at varying differentiation. The Mg/Ca-ratio as proxy for salinity is applicable in evaporites. The binary plot Nb/Y versus Zr/TiO2 indicates a presently eroded volcanic level of the Bohemian Massif as catchment area for the Middle Bunter, whereas higly differentiated volcanics provided source material for Neoproterozoic greywackes. A positive Eu-anomaly is limited to the Lower Bunter and implies mafic source rocks perhaps formerly located in the Bohemian Massif.
    Keywords: AGE; Aluminium; Aluminium oxide; Antimony; Arsenic; Barium; Beryllium; Bismuth; Boron; Cadmium; Caesium; Calcium; Calcium oxide; Carbon, organic, total; Carbon, total; Carbon dioxide; Cerium; Chlorine; Chromium; Cobalt; Copper; Dysprosium; environmental change; Erbium; Europium; Gadolinium; Gallium; Germanium; Gold; Hafnium; Holmium; Indium; inorganic geochemistry; Iodine; Iron; Iron oxide, Fe2O3; Iron oxide, FeO; Lanthanum; Lead; Lithium; Loss on ignition; Lutetium; Magnesium; Magnesium oxide; Manganese; Manganese oxide; Median values; Mercury; Molybdenum; MULT; Multiple investigations; Neodymium; Nickel; Niobium; Nitrogen, total; Number of analyses; Palladium; Phosphorus; Phosphorus pentoxide; Platinum; Potassium; Potassium oxide; Praseodymium; provenance study; proxies; Recalculated; Rhenium; Rubidium; Saale; Saale catchment; Samarium; Scandium; Selenium; Silicon; Silicon dioxide; Silver; Sodium; Sodium oxide; Stratigraphy; Strontium; Sulfur, total; Sulfur trioxide; Tantalum; Tellurium; Terbium; Thallium; Thorium; Thulium; Tin; Titanium; Titanium dioxide; Tungsten; Uranium; Vanadium; Water in rock; Ytterbium; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 2994 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-09
    Description: This dataset includes two data tables of methane (CH4) fluxes measured in Arctic uplands. Dataset 1 contains CH4 fluxes measured at high temporal resolution (hourly fluxes) collected over two snow-free seasons (June–August; 2019, 2021) at Trail Valley Creek, an Arctic tundra site in the Western Canadian Arctic. Fluxes were measured with automated chambers installed in replication of six at three individual landcover vegetation units (Lichen, Shrub, Tussock) within dwarf-shrub dominated tundra. Site meteorological data are provided with the flux data at hourly resolution. Dataset 2 includes campaign-based, manual chamber measurements at sites displaying net CH4 uptake. These manual measurements were conducted during the growing season at typical, well-drained upland sites, which included, besides Trail Valley Creek, three additional sites in the Canadian and European Arctic (Havikpak Creek, Scotty Creek, Kilpisjärvi). Besides CH4 flux observations, dataset 2 contains measured greenhouse gas concentration profiles of CH4, carbon dioxide (CO2) and nitrous oxide (N2O) at 2 cm, 5 cm, 10 cm, and 20 cm soil depths, as well as site meteorological data. While wetlands are known CH4 emitters, drier arctic and boreal uplands may act as sinks of atmospheric CH4. The scope of the study and this dataset is to improve the spatial and temporal coverage of low CH4 emitting and sites displaying net CH4 uptake across the Arctic. Both datasets are meant as supplement to the published study, where further, detailed information on site conditions and methodology can be found.
    Keywords: Arctic; automated chambers; Methane; methane oxidation; Tundra; Uplands
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-08-21
    Description: This dataset contains methane fluxes measured at high temporal resolution (hourly fluxes) collected over two snow-free seasons (June–August; 2019, 2021) at Trail Valley Creek, an Arctic tundra site in the Western Canadian Arctic. Fluxes were measured with automated chambers installed in replication of six at three individual landcover vegetation units (Lichen, Shrub, Tussock) within dwarf-shrub dominated tundra. Site meteorological data are provided with the flux data at hourly resolution.
    Keywords: Air temperature at 2 m height; Arctic; automated chambers; Chamber number; DATE/TIME; Date/Time local; Friction velocity; Humidity, relative; Land cover classes; LATITUDE; LONGITUDE; Long-wave downward radiation; Long-wave upward radiation; Methane; Methane, flux; methane oxidation; MULT; Multiple investigations; Photosynthetic photon, flux density; Precipitation; Pressure, atmospheric; Short-wave downward (GLOBAL) radiation; Short-wave upward (REFLEX) radiation; SoilChamber_TrailValley; Temperature, air; Temperature, soil; Temperature, soil, gap filled variable; Trail Valley; Tundra; Type of chamber; Uplands; Vapour pressure deficit; Water content, volumetric; Water content, volumetric, gap filled variable; Water filled pore space; Water filled pore space, gap filled variable; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 1971511 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-12
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in the surrounding and within different wind farms of the German Bight in April 2018 within the context of the Hereon-BSH project OffChEm. The surface sediment samples were taken by a box grab, homogenized, freeze-dried and wet-sieved to gain the 〈20 µm grain size fraction. The 〈20 µm grain size fraction was acid digested and measured by ICP-MS/MS for their (trace) metal mass fractions. The Sr and Pb isotope ratios were measured by MC ICP-MS after an automated matrix separation with a prepFAST MC system.
    Keywords: Aluminium; Aluminium, limit of detection; Aluminium, limit of quantification; Aluminium, uncertainty; Antimony; Antimony, limit of detection; Antimony, limit of quantification; Antimony, uncertainty; Arsenic; Arsenic, limit of detection; Arsenic, limit of quantification; Arsenic, uncertainty; AT261; Atair; Atair261; Atair261_10_BC; Atair261_11_BC; Atair261_13_BC; Atair261_14_BC; Atair261_15_BC; Atair261_16_BC; Atair261_17_BC; Atair261_2_BC; Atair261_20_BC; Atair261_21_BC; Atair261_22_BC; Atair261_23_BC; Atair261_24_BC; Atair261_25_BC; Atair261_27_BC; Atair261_29_BC; Atair261_3_BC; Atair261_30_BC; Atair261_31_BC; Atair261_32_BC; Atair261_33_BC; Atair261_34_BC; Atair261_35_BC; Atair261_36_BC; Atair261_37_BC; Atair261_38_BC; Atair261_39_BC; Atair261_4_BC; Atair261_40_BC; Atair261_41_BC; Atair261_42_BC; Atair261_43_BC; Atair261_44_BC; Atair261_46_BC; Atair261_47_BC; Atair261_48_BC; Atair261_49_BC; Atair261_50_BC; Atair261_51_BC; Atair261_52_BC; Atair261_53_BC; Atair261_54_BC; Atair261_55_BC; Atair261_56_BC; Atair261_57_BC; Atair261_58_BC; Atair261_59_BC; Atair261_60_BC; Atair261_61_BC; Atair261_62_BC; Atair261_63_BC; Atair261_9_BC; Barium; Barium, limit of detection; Barium, limit of quantification; Barium, uncertainty; BC; Beryllium; Beryllium, limit of detection; Beryllium, limit of quantification; Beryllium, uncertainty; Bismuth; Bismuth, limit of detection; Bismuth, limit of quantification; Bismuth, uncertainty; Box corer; Cadmium; Cadmium, limit of detection; Cadmium, limit of quantification; Cadmium, uncertainty; Caesium; Caesium, limit of detection; Caesium, limit of quantification; Caesium, uncertainty; Calcium; Calcium, limit of detection; Calcium, limit of quantification; Calcium, uncertainty; Cerium; Cerium, limit of detection; Cerium, limit of quantification; Cerium, uncertainty; Chromium; Chromium, limit of detection; Chromium, limit of quantification; Chromium, uncertainty; Cobalt; Cobalt, limit of detection; Cobalt, limit of quantification; Cobalt, uncertainty; DATE/TIME; DEPTH, sediment/rock; Dysprosium; Dysprosium, limit of detection; Dysprosium, limit of quantification; Dysprosium, uncertainty; Element analysis grain size fraction 〈 20 microns via ICP-MS (total digest); ELEVATION; Erbium; Erbium, limit of detection; Erbium, limit of quantification; Erbium, uncertainty; Europium; Europium, limit of detection; Europium, limit of quantification; Europium, uncertainty; Event label; Gadolinium; Gadolinium, limit of detection; Gadolinium, limit of quantification; Gadolinium, uncertainty; Gallium; Gallium, limit of detection; Gallium, limit of quantification; Gallium, uncertainty; German Bight; Helmholtz-Zentrum Hereon; Hereon; Holmium; Holmium, limit of detection; Holmium, limit of quantification; Holmium, uncertainty; Indium; Indium, limit of detection; Indium, limit of quantification; Indium, uncertainty; Iron; Iron, limit of detection; Iron, limit of quantification; Iron, uncertainty; Lanthanum; Lanthanum, limit of detection; Lanthanum, limit of quantification; Lanthanum, uncertainty; LATITUDE; Lead; Lead, limit of detection; Lead, limit of quantification; Lead, uncertainty; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, uncertainty; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, uncertainty; Lead-207/Lead-206, uncertainty; Lead-207/Lead-206 ratio; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, uncertainty; Lead-208/Lead-206 ratio; Lead-208/Lead-206 ratio, uncertainty; Lead-208/Lead-207 ratio; Lead-208/Lead-207 ratio, uncertainty; Lithium; Lithium, limit of detection; Lithium, limit of quantification; Lithium, uncertainty; LONGITUDE; Lutetium; Lutetium, limit of detection; Lutetium, limit of quantification; Lutetium, uncertainty; Magnesium; Magnesium, limit of detection; Magnesium, limit of quantification; Magnesium, uncertainty; Manganese; Manganese, limit of detection; Manganese, limit of quantification; Manganese, uncertainty; Molybdenum; Molybdenum, limit of detection; Molybdenum, limit of quantification; Molybdenum, uncertainty; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II, Wrexham, UK; External intra-elemental calibration using NIST SRM 981; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II, Wrexham, UK; External intra-elemental calibration using NIST SRM 987; Neodymium; Neodymium, limit of detection; Neodymium, limit of quantification; Neodymium, uncertainty; Nickel; Nickel, limit of detection; Nickel, limit of quantification; Nickel, uncertainty; Potassium; Potassium, limit of detection; Potassium, limit of quantification; Potassium, uncertainty; Praseodymium; Praseodymium, limit of detection; Praseodymium, limit of quantification; Praseodymium, uncertainty; Rubidium; Rubidium, limit of detection; Rubidium, limit of quantification; Rubidium, uncertainty; Samarium; Samarium, limit of detection; Samarium, limit of quantification; Samarium, uncertainty; Sample ID; Sample method; Scandium; Scandium, limit of detection; Scandium, limit of quantification; Scandium, uncertainty; Silver; Silver, limit of detection; Silver, limit of quantification; Silver, uncertainty; Station_10_HELW3; Station_11_NOST1; Station_13_NOST3; Station_14_NOST4; Station_15_NOST5; Station_16_NOST6; Station_17_NOST7; Station_2_TI7; Station_20_AMWE2; Station_21_AMWE3; Station_22_AMWE4; Station_23_AMWE5; Station_24_AMWE6; Station_25_AMWE7; Station_27_AMWE9; Station_29_DOLW1; Station_3_MEWI1; Station_30_DOLW2; Station_31_DOLW3; Station_32_BKRI1; Station_33_BKRI2; Station_34_BKRI3; Station_35_BKRI4; Station_36_BKRI5; Station_37_ALVE2; Station_38_ALVE3; Station_39_ALVE1; Station_4_MEWI3; Station_40_ALVE4; Station_41_DOLW5; Station_42_DOLW6; Station_43_GOWI2; Station_44_GOWI3; Station_46_GOWI6; Station_47_GOWI7; Station_48_GOWI8; Station_49_GOWI9; Station_50_GOWI1; Station_51_GOWI4; Station_52_GOWI10; Station_53_GOWI11; Station_54_GOWI20; Station_55_GOWI21; Station_56_GOWI22; Station_57_GOWI23; Station_58_GOWI24; Station_59_GOWI25; Station_60_GOWI26; Station_61_GOWI27; Station_62_GOWI28; Station_63_GOWI29; Station_9_HELW2; Station label; Strontium; Strontium, limit of detection; Strontium, limit of quantification; Strontium, uncertainty; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, uncertainty; Terbium; Terbium, limit of detection; Terbium, limit of quantification; Terbium, uncertainty; Thallium; Thallium, limit of detection; Thallium, limit of quantification; Thallium, uncertainty; Thulium; Thulium, limit of detection; Thulium, limit of quantification; Thulium, uncertainty; Titanium; Titanium, limit of detection; Titanium, limit of quantification; Titanium, uncertainty; Tungsten; Tungsten, limit of detection; Tungsten, limit of quantification; Tungsten, uncertainty; Uranium; Uranium, limit of detection; Uranium, limit of quantification; Uranium, uncertainty; Vanadium; Vanadium, limit of detection; Vanadium, limit of quantification; Vanadium, uncertainty; Ytterbium; Ytterbium, limit of detection; Ytterbium, limit of quantification; Ytterbium, uncertainty; Zinc; Zinc, limit of detection; Zinc, limit of quantification; Zinc, uncertainty
    Type: Dataset
    Format: text/tab-separated-values, 9992 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-09
    Description: This dataset includes campaign-based, manual chamber measurements at sites displaying net methane (CH4) uptake. These manual measurements were conducted during the growing season at typical, well-drained upland sites, which included, besides Trail Valley Creek, three additional sites in the Canadian and European Arctic (Havikpak Creek, Scotty Creek, Kilpisjärvi). Besides CH4 flux observations, the dataset contains measured greenhouse gas concentration profiles of CH4, carbon dioxide (CO2) and nitrous oxide (N2O) at 2 cm, 5 cm, 10 cm, and 20 cm soil depths, as well as site meteorological data.
    Keywords: Air temperature at 2 m height; Arctic; automated chambers; Carbon dioxide; Date; DATE/TIME; Event label; Friction velocity; Greenness; Havikpak Creek; Humidity, relative; Kilpisjärvi; Land cover classes; Land cover type; LATITUDE; Location ID; LONGITUDE; Long-wave downward radiation; Long-wave upward radiation; Methane; Methane, flux; methane oxidation; MULT; Multiple investigations; Nitrous oxide; Photosynthetic photon, flux density; Precipitation; Pressure, atmospheric; Replicate; Scotty Creek; Short-wave downward (GLOBAL) radiation; Short-wave upward (REFLEX) radiation; Site; SoilChamber_HavikpakCreek; SoilChamber_Kilpisjaervi; SoilChamber_ScottyCreek; SoilChamber_TrailValley; Soil moisture; Temperature, soil; Thaw depth of active layer; Trail Valley; Tundra; Uplands; Vapour pressure deficit; Vegetation, cover; Water filled pore space; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 6426 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-05
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in and around offshore wind farms of the German Bight between 06.03.2019 and 24.03.2019.
    Keywords: Helmholtz-Zentrum Hereon; Hereon
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-05
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in and around offshore wind farms of the German Bight between 06.03.2019 and 24.03.2019 within the context of the Hereon-BSH project OffChEm. The surface sediment samples were taken by a box grab, homogenized, freeze-dried and wet-sieved to gain the 〈20 µm grain size fraction. The 〈20 µm grain size fraction was acid digested and measured by ICP-MS/MS for their (trace) metal mass fractions. The Sr and Pb isotope ratios were measured by MC ICP-MS after an automated matrix separation with a prepFAST MCTM system.
    Keywords: Aluminium; Aluminium, limit of detection; Aluminium, limit of quantification; Aluminium, uncertainty; Arsenic; Arsenic, limit of detection; Arsenic, limit of quantification; Arsenic, uncertainty; AT275; AT275_Stat_S_097_HELW5; Atair; Atair275; Atair275_11; Atair275_12; Atair275_13; Atair275_14; Atair275_17; Atair275_18; Atair275_19; Atair275_2; Atair275_20; Atair275_21; Atair275_22; Atair275_23; Atair275_24; Atair275_25; Atair275_26; Atair275_27; Atair275_28; Atair275_29; Atair275_30; Atair275_31; Atair275_32; Atair275_33; Atair275_34; Atair275_35; Atair275_36; Atair275_39; Atair275_4; Atair275_40; Atair275_41; Atair275_42; Atair275_43; Atair275_44; Atair275_45; Atair275_46; Atair275_47; Atair275_48; Atair275_49; Atair275_5; Atair275_52; Atair275_53; Atair275_54; Atair275_55; Atair275_56; Atair275_57; Atair275_58; Atair275_60; Atair275_61; Atair275_62; Atair275_64; Atair275_65; Atair275_67; Atair275_68; Atair275_69; Atair275_7; Atair275_70; Atair275_71; Atair275_72; Atair275_73; Atair275_75; Atair275_78; Atair275_79; Atair275_8; Atair275_80; Atair275_81; Atair275_82; Atair275_83; Atair275_84; Atair275_85; Atair275_86; Atair275_87; Atair275_88; Atair275_89; Atair275_9; Atair275_91; Atair275_92; Atair275_93; Atair275_94; Atair275_95; Atair275_96; Atair275_97; Barium; Barium, limit of detection; Barium, limit of quantification; Barium, uncertainty; Beryllium; Beryllium, limit of detection; Beryllium, limit of quantification; Beryllium, uncertainty; Bismuth; Bismuth, limit of detection; Bismuth, limit of quantification; Bismuth, uncertainty; Cadmium; Cadmium, limit of detection; Cadmium, limit of quantification; Cadmium, uncertainty; Caesium; Caesium, limit of detection; Caesium, limit of quantification; Caesium, uncertainty; Calcium; Calcium, limit of detection; Calcium, limit of quantification; Calcium, uncertainty; Cerium; Cerium, limit of detection; Cerium, limit of quantification; Cerium, uncertainty; Chromium; Chromium, limit of detection; Chromium, limit of quantification; Chromium, uncertainty; Cobalt; Cobalt, limit of detection; Cobalt, limit of quantification; Cobalt, uncertainty; DEPTH, sediment/rock; Dysprosium; Dysprosium, limit of detection; Dysprosium, limit of quantification; Dysprosium, uncertainty; Element analysis grain size fraction 〈 20 microns via ICP-MS (total digest); Erbium; Erbium, limit of detection; Erbium, limit of quantification; Erbium, uncertainty; Europium; Europium, limit of detection; Europium, limit of quantification; Europium, uncertainty; Event label; Gadolinium; Gadolinium, limit of detection; Gadolinium, limit of quantification; Gadolinium, uncertainty; Gallium; Gallium, limit of detection; Gallium, limit of quantification; Gallium, uncertainty; Germanium; Germanium, limit of detection; Germanium, limit of quantification; Germanium, uncertainty; Helmholtz-Zentrum Hereon; Hereon; Holmium; Holmium, limit of detection; Holmium, limit of quantification; Holmium, uncertainty; Indium; Indium, limit of detection; Indium, limit of quantification; Indium, uncertainty; International Generic Sample Number; Iron; Iron, limit of detection; Iron, limit of quantification; Iron, uncertainty; Lanthanum; Lanthanum, limit of detection; Lanthanum, limit of quantification; Lanthanum, uncertainty; Lead; Lead, limit of detection; Lead, limit of quantification; Lead, uncertainty; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, uncertainty; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, uncertainty; Lead-207/Lead-206 ratio; Lead-207/Lead-206 ratio, uncertainty; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, uncertainty; Lead-208/Lead-206 ratio; Lead-208/Lead-206 ratio, uncertainty; Lead-208/Lead-207 ratio; Lead-208/Lead-207 ratio, uncertainty; Lithium; Lithium, limit of detection; Lithium, limit of quantification; Lithium, uncertainty; Lutetium; Lutetium, limit of detection; Lutetium, limit of quantification; Lutetium, uncertainty; Magnesium, limit of detection; Magnesium, limit of quantification; Magnesium, uncertainty; Manganese; Manganese, limit of detection; Manganese, limit of quantification; Manganese, uncertainty; Mercury; Mercury, limit of detection; Mercury, limit of quantification; Mercury, uncertainty; Molybdenum; Molybdenum, limit of detection; Molybdenum, limit of quantification; Molybdenum, uncertainty; MULT; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II, Wrexham, UK; External intra-elemental calibration using NIST SRM 981; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II, Wrexham, UK; External intra-elemental calibration using NIST SRM 987; Multiple investigations; Neodymium; Neodymium, limit of detection; Neodymium, limit of quantification; Neodymium, uncertainty; Nickel; Nickel, limit of detection; Nickel, limit of quantification; Nickel, uncertainty; Niobium; Niobium, limit of detection; Niobium, limit of quantification; Niobium, uncertainty; North Sea; Phosphorus; Phosphorus, limit of detection; Phosphorus, limit of quantification; Phosphorus, uncertainty; Potassium; Potassium, limit of detection; Potassium, limit of quantification; Potassium, uncertainty; Praseodymium; Praseodymium, limit of detection; Praseodymium, limit of quantification; Praseodymium, uncertainty; Rubidium; Rubidium, limit of detection; Rubidium, limit of quantification; Rubidium, uncertainty; S_002_AMWE4; S_004_AMWE3; S_005_AMWE7; S_007_AMWE5; S_008_AMWE6; S_009_AMWE15; S_011_AMWE19; S_012_AMWE20; S_013_AMWE21; S_014_AMWE22; S_017_NOST4; S_018_NOST1; S_019_NOST5; S_020_NOST6; S_021_NOST7; S_022_NOST3; S_023_NOST42; S_024_NOST43; S_025_NOST35; S_026_TI7; S_027_MEWI1; S_028_MEWI3; S_029_MEWI6; S_030_TI13; S_031_MEWI7; S_032_MEWI36; S_033_MEWI37; S_034_MEWI38; S_035_MEWI40; S_036_MEWI41; S_039_DOLW1; S_040_ALVE5; S_041_ALVE4; S_042_ALVE2; S_043_ALVE3; S_044_ALVE1; S_045_BKRI5; S_046_BKRI4; S_047_BKRI3; S_048_BKRI2; S_049_BKRI1; S_052_GOWI10; S_053_GOWI6; S_054_GOWI7; S_055_GOWI9; S_056_GOWI11; S_057_GOWI4; S_058_GOWI3; S_060_GOWI2; S_061_GOWI1; S_062_GOWI8; S_064_GOWI54; S_065_GOWI59; S_067_GOWI26; S_068_GOWI24; S_069_GOWI21; S_070_GOWI25; S_071_GOWI20; S_072_GOWI22; S_073_GOWI23; S_075_GOWI29; S_078_GOWI55; S_079_GOWI57; S_080_DOLW7; S_081_VEJA02; S_082_VEJA03; S_083_VEJA04; S_084_VEJA05; S_085_VEJA06; S_086_VEJA08; S_087_VEJA09; S_088_VEJA10; S_089_VEJA11; S_091_DOLW8; S_092_DOLW10; S_093_DOLW9; S_094_VEJA16; S_095_HELW1; S_096_HELW4; Samarium; Samarium, limit of detection; Samarium, limit of quantification; Samarium, uncertainty; Sample code/label; Sample method; Scandium; Scandium, limit of detection; Scandium, limit of quantification; Scandium, uncertainty; Selenium; Selenium, limit of detection; Selenium, limit of quantification; Selenium, uncertainty; Silver; Silver, limit of detection; Silver, limit of quantification; Silver, uncertainty; Sodium; Sodium, limit of detection; Sodium, limit of quantification; Sodium, uncertainty; Station label; Strontium; Strontium, limit of detection; Strontium, limit of quantification; Strontium, uncertainty; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, uncertainty; Tantalum; Tantalum, limit of detection; Tantalum, limit of quantification; Tantalum, uncertainty; Tellurium; Tellurium, limit of detection; Tellurium, limit of quantification; Tellurium, uncertainty; Terbium; Terbium, limit of detection; Terbium, limit of quantification; Terbium, uncertainty; Thallium; Thallium, limit of detection; Thallium, limit of quantification; Thallium, uncertainty; Thorium; Thorium, limit of detection; Thorium, limit of quantification; Thorium, uncertainty; Thulium; Thulium, limit of detection; Thulium, limit of quantification; Thulium, uncertainty; Titanium; Titanium, limit of detection; Titanium, limit of quantification; Titanium, uncertainty; Tungsten; Tungsten, limit of detection; Tungsten, limit of quantification; Tungsten, uncertainty; Uranium; Uranium, limit of detection; Uranium, limit of quantification; Uranium, uncertainty; Vanadium; Vanadium, limit of detection; Vanadium, limit
    Type: Dataset
    Format: text/tab-separated-values, 17568 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-05
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in and around offshore wind farms of the German Bight between 06.03.2019 and 24.03.2019 within the context of the Hereon-BSH project OffChEm. The water samples were taken in metal-free GO-FLO sampling bottles, filtered over 〈0.45 µm polycarbonate filters into pre-cleaned LDPE bottles and acidified with nitric acid. The filtrates were then measured for their (trace) metal concentrations with ICP-MS/MS coupled online to a seaFAST preconcentration and matrix removal system.
    Keywords: Aluminium; Aluminium, standard deviation; AT275; AT275_Stat_S_097_HELW5; Atair; Atair275; Atair275_11; Atair275_12; Atair275_13; Atair275_14; Atair275_15; Atair275_16; Atair275_17; Atair275_18; Atair275_19; Atair275_2; Atair275_20; Atair275_21; Atair275_22; Atair275_23; Atair275_24; Atair275_25; Atair275_26; Atair275_27; Atair275_28; Atair275_29; Atair275_30; Atair275_31; Atair275_32; Atair275_33; Atair275_34; Atair275_35; Atair275_36; Atair275_39; Atair275_4; Atair275_40; Atair275_41; Atair275_42; Atair275_43; Atair275_44; Atair275_45; Atair275_46; Atair275_47; Atair275_48; Atair275_49; Atair275_5; Atair275_52; Atair275_53; Atair275_54; Atair275_55; Atair275_56; Atair275_57; Atair275_58; Atair275_6; Atair275_60; Atair275_61; Atair275_64; Atair275_65; Atair275_67; Atair275_68; Atair275_69; Atair275_7; Atair275_70; Atair275_71; Atair275_72; Atair275_73; Atair275_75; Atair275_78; Atair275_79; Atair275_8; Atair275_80; Atair275_81; Atair275_82; Atair275_83; Atair275_84; Atair275_85; Atair275_86; Atair275_87; Atair275_88; Atair275_89; Atair275_9; Atair275_90; Atair275_91; Atair275_92; Atair275_93; Atair275_94; Atair275_95; Atair275_96; Atair275_97; Cadmium; Cadmium, standard deviation; Cerium; Cerium, standard deviation; Cobalt; Cobalt, standard deviation; Copper; Copper, standard deviation; Date/Time of event; DEPTH, water; Dysprosium; Dysprosium, standard deviation; Elevation of event; Erbium; Erbium, standard deviation; Europium; Europium, standard deviation; Event label; Gadolinium; Gadolinium, anthropogenic; Gadolinium, anthropogenic, uncertainty; Gadolinium, standard deviation; Gadolinium anomaly; Gadolinium anomaly, uncertainty; Gallium; Gallium, standard deviation; Helmholtz-Zentrum Hereon; Hereon; Holmium; Holmium, standard deviation; ICP-MS, Elemental Scientific, seaFAST; Indium; Indium, standard deviation; International Generic Sample Number; Iron; Iron, standard deviation; Lanthanum; Lanthanum, standard deviation; Latitude of event; Lead; Lead, standard deviation; Longitude of event; Lutetium; Lutetium, standard deviation; Manganese; Manganese, standard deviation; Molybdenum; Molybdenum, standard deviation; MULT; Multiple investigations; Neodymium; Neodymium, standard deviation; Nickel; Nickel, standard deviation; North Sea; Praseodymium; Praseodymium, standard deviation; Quality assessment; S_002_AMWE4; S_004_AMWE3; S_005_AMWE7; S_006_ANWE8; S_007_AMWE5; S_008_AMWE6; S_009_AMWE15; S_011_AMWE19; S_012_AMWE20; S_013_AMWE21; S_014_AMWE22; S_015_NOST4_WH; S_016_HELW1_WH; S_017_NOST4; S_018_NOST1; S_019_NOST5; S_020_NOST6; S_021_NOST7; S_022_NOST3; S_023_NOST42; S_024_NOST43; S_025_NOST35; S_026_TI7; S_027_MEWI1; S_028_MEWI3; S_029_MEWI6; S_030_TI13; S_031_MEWI7; S_032_MEWI36; S_033_MEWI37; S_034_MEWI38; S_035_MEWI40; S_036_MEWI41; S_039_DOLW1; S_040_ALVE5; S_041_ALVE4; S_042_ALVE2; S_043_ALVE3; S_044_ALVE1; S_045_BKRI5; S_046_BKRI4; S_047_BKRI3; S_048_BKRI2; S_049_BKRI1; S_052_GOWI10; S_053_GOWI6; S_054_GOWI7; S_055_GOWI9; S_056_GOWI11; S_057_GOWI4; S_058_GOWI3; S_060_GOWI2; S_061_GOWI1; S_064_GOWI54; S_065_GOWI59; S_067_GOWI26; S_068_GOWI24; S_069_GOWI21; S_070_GOWI25; S_071_GOWI20; S_072_GOWI22; S_073_GOWI23; S_075_GOWI29; S_078_GOWI55; S_079_GOWI57; S_080_DOLW7; S_081_VEJA02; S_082_VEJA03; S_083_VEJA04; S_084_VEJA05; S_085_VEJA06; S_086_VEJA08; S_087_VEJA09; S_088_VEJA10; S_089_VEJA11; S_090_VEJA12; S_091_DOLW8; S_092_DOLW10; S_093_DOLW9; S_094_VEJA16; S_095_HELW1; S_096_HELW4; Samarium; Samarium, standard deviation; Sample code/label; Station label; Terbium; Terbium, standard deviation; Thulium; Thulium, standard deviation; Tin; Tungsten; Tungsten, standard deviation; Uranium; Uranium, standard deviation; Vanadium; Vanadium, standard deviation; Ytterbium; Ytterbium, standard deviation; Yttrium; Yttrium, standard deviation; Zinc; Zinc, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 5499 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-05
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in and around offshore wind farms of the German Bight between 06.03.2019 and 24.03.2019.
    Keywords: ALTITUDE; AT275; AT275_Stat_S_097_HELW5; Atair; Atair275; Atair275_11; Atair275_12; Atair275_13; Atair275_14; Atair275_15; Atair275_16; Atair275_17; Atair275_18; Atair275_19; Atair275_2; Atair275_20; Atair275_21; Atair275_22; Atair275_23; Atair275_24; Atair275_25; Atair275_26; Atair275_27; Atair275_28; Atair275_29; Atair275_30; Atair275_31; Atair275_32; Atair275_33; Atair275_34; Atair275_35; Atair275_36; Atair275_39; Atair275_4; Atair275_40; Atair275_41; Atair275_42; Atair275_43; Atair275_44; Atair275_45; Atair275_46; Atair275_47; Atair275_48; Atair275_49; Atair275_5; Atair275_52; Atair275_53; Atair275_54; Atair275_55; Atair275_56; Atair275_57; Atair275_58; Atair275_6; Atair275_60; Atair275_61; Atair275_62; Atair275_64; Atair275_65; Atair275_67; Atair275_68; Atair275_69; Atair275_7; Atair275_70; Atair275_71; Atair275_72; Atair275_73; Atair275_75; Atair275_78; Atair275_79; Atair275_8; Atair275_80; Atair275_81; Atair275_82; Atair275_83; Atair275_84; Atair275_85; Atair275_86; Atair275_87; Atair275_88; Atair275_89; Atair275_9; Atair275_90; Atair275_91; Atair275_92; Atair275_93; Atair275_94; Atair275_95; Atair275_96; Atair275_97; Conductivity; Date/Time of event; DEPTH, water; Elevation of event; Event label; Helmholtz-Zentrum Hereon; Hereon; Latitude of event; Longitude of event; MULT; Multimeter; Multiple investigations; North Sea; Oxygen, dissolved; pH; Pressure, atmospheric; S_002_AMWE4; S_004_AMWE3; S_005_AMWE7; S_006_ANWE8; S_007_AMWE5; S_008_AMWE6; S_009_AMWE15; S_011_AMWE19; S_012_AMWE20; S_013_AMWE21; S_014_AMWE22; S_015_NOST4_WH; S_016_HELW1_WH; S_017_NOST4; S_018_NOST1; S_019_NOST5; S_020_NOST6; S_021_NOST7; S_022_NOST3; S_023_NOST42; S_024_NOST43; S_025_NOST35; S_026_TI7; S_027_MEWI1; S_028_MEWI3; S_029_MEWI6; S_030_TI13; S_031_MEWI7; S_032_MEWI36; S_033_MEWI37; S_034_MEWI38; S_035_MEWI40; S_036_MEWI41; S_039_DOLW1; S_040_ALVE5; S_041_ALVE4; S_042_ALVE2; S_043_ALVE3; S_044_ALVE1; S_045_BKRI5; S_046_BKRI4; S_047_BKRI3; S_048_BKRI2; S_049_BKRI1; S_052_GOWI10; S_053_GOWI6; S_054_GOWI7; S_055_GOWI9; S_056_GOWI11; S_057_GOWI4; S_058_GOWI3; S_060_GOWI2; S_061_GOWI1; S_062_GOWI8; S_064_GOWI54; S_065_GOWI59; S_067_GOWI26; S_068_GOWI24; S_069_GOWI21; S_070_GOWI25; S_071_GOWI20; S_072_GOWI22; S_073_GOWI23; S_075_GOWI29; S_078_GOWI55; S_079_GOWI57; S_080_DOLW7; S_081_VEJA02; S_082_VEJA03; S_083_VEJA04; S_084_VEJA05; S_085_VEJA06; S_086_VEJA08; S_087_VEJA09; S_088_VEJA10; S_089_VEJA11; S_090_VEJA12; S_091_DOLW8; S_092_DOLW10; S_093_DOLW9; S_094_VEJA16; S_095_HELW1; S_096_HELW4; Sample ID; Station label; Temperature, air; Temperature, water; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 908 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...