ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (60)
  • Wiley  (4)
  • American Physical Society
  • 2020-2024  (64)
Collection
Keywords
Year
  • 1
    Publication Date: 2024-02-07
    Description: We present the results of P-to-S receiver function analysis to improve the 3D image of the sedimentary layer, the upper crust, and lower crust in the Pannonian Basin area. The Pannonian Basin hosts deep sedimentary depocentres superimposed on a complex basement structure and it is surrounded by mountain belts. We processed waveforms from 221 three-component broadband seismological stations. As a result of the dense station coverage, we were able to achieve so far unprecedented spatial resolution in determining the velocity structure of the crust. We applied a three-fold quality control process; the first two being applied to the observed waveforms and the third to the calculated radial receiver functions. This work is the first comprehensive receiver function study of the entire region. To prepare the inversions, we performed station-wise H-Vp/Vs grid search, as well as Common Conversion Point migration. Our main focus was then the S-wave velocity structure of the area, which we determined by the Neighborhood Algorithm inversion method at each station, where data were sub-divided into back-azimuthal bundles based on similar Ps delay times. The 1D, nonlinear inversions provided the depth of the discontinuities, shear-wave velocities and Vp/Vs ratios of each layer per bundle, and we calculated uncertainty values for each of these parameters. We then developed a 3D interpolation method based on natural neighbor interpolation to obtain the 3D crustal structure from the local inversion results. We present the sedimentary thickness map, the first Conrad depth map and an improved, detailed Moho map, as well as the first upper and lower crustal thickness maps obtained from receiver function analysis. The velocity jump across the Conrad discontinuity is estimated at less than 0.2 km/s over most of the investigated area. We also compare the new Moho map from our approach to simple grid search results and prior knowledge from other techniques. Our Moho depth map presents local variations in the investigated area: the crust-mantle boundary is at 20–26 km beneath the sedimentary basins, while it is situated deeper below the Apuseni Mountains, Transdanubian and North Hungarian Ranges (28–33 km), and it is the deepest beneath the Eastern Alps and the Southern Carpathians (40–45 km). These values reflect well the Neogene evolution of the region, such as crustal thinning of the Pannonian Basin and orogenic thickening in the neighboring mountain belts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-23
    Description: The understanding of silicate weathering and its role as a sink for atmospheric CO 2 is important to get a better insight into how the Earth shifts from warm to cool climates. The lithium isotope composition (δ 7 Li) of marine carbonates can be used as a proxy to track the past chemical weathering of silicates. A high‐resolution δ 7 Li record would be helpful to evaluate the role of silicate weathering during the late Cretaceous climate cooling. Here, we assess chalk as a potential archive for reconstructing Late Cretaceous seawater Li isotope composition by comparing Maastrichtian chalk from Northern Germany (Hemmoor, Kronsmoor) to a Quaternary coccolith ooze from the Manihiki Plateau (Pacific Ocean) as a lithological analog to modern conditions. We observe a negative offset of 3.9 ± 0.6‰ for the coccolith ooze relative to the modern seawater Li isotope composition (+31.1 ± 0.3‰; 2SE; n = 54), a value that falls in the range of published offsets for modern core‐top samples and for brachiopod calcite. Further, the negative offset between the Li isotope compositions of Manihiki coccolith ooze and modern planktonic foraminifera is 2.3 ± 0.6‰. Although chalk represents a diagenetically altered modification of pelagic nannofossil ooze, manifested by changes in the composition of trace elements, we observe a consistent offset of Li isotope data between Maastrichtian chalk and Maastrichtian planktonic foraminiferal data (−1.4 ± 0. 5‰) that lies within the uncertainty of modern values. We therefore suggest that chalk can be used as a reliable archive for δ 7 Li reconstructions. Key Points Chalk is a reliable archive for the Li isotope composition of seawater Coccolith ooze has a negative offset of 3.9 ± 0.6‰ from modern seawater for Li isotope ratios The estimated mean value for the late Maastrichtian seawater Li isotope composition is +27.5 ± 1.0‰
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-15
    Description: With declining biodiversity worldwide, a better understanding of species diversity and their relationships is imperative for conservation and management efforts. Marine sponges are species-rich ecological key players on coral reefs, but their species diversity is still poorly understood. This is particularly true for the demosponge order Haplosclerida, whose systematic relationships are contentious due to the incongruencies between morphological and molecular phylogenetic hypotheses. The single gene markers applied in previous studies did not resolve these discrepancies. Hence, there is a high need for a genome-wide approach to derive a phylogenetically robust classification and understand this group\'s evolutionary relationships. To this end, we developed a target enrichment-based multilocus probe assay for the order Haplosclerida using transcriptomic data. This probe assay consists of 20,000 enrichment probes targeting 2956 ultraconserved elements in coding (i.e. exon) regions across the genome and was tested on 26 haplosclerid specimens from the Red Sea. Our target-enrichment approach correctly placed our samples in a well-supported phylogeny, in agreement with previous haplosclerid molecular phylogenies. Our results demonstrate the applicability of high-resolution genomic methods in a systematically complex marine invertebrate group and provide a promising approach for robust phylogenies of Haplosclerida. Subsequently, this will lead to biologically unambiguous taxonomic revisions, better interpretations of biological and ecological observations and new avenues for applied research, conservation and managing declining marine diversity.
    Keywords: bait design ; exon ; phylogenetic markers ; target capture ; ultraconserved element
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Multi‐Scale Biogeochemical Processes in Soil Ecosystems, Multi‐Scale Biogeochemical Processes in Soil Ecosystems, Hoboken, NJ, Wiley, pp. 157-181, ISBN: 9781119480471
    Publication Date: 2024-04-22
    Description: Tundra is experiencing more intense warming than any other ecosystem on earth. While warming is the most direct effect of climate change on tundra, warming leads to a cascade of environmental changes such as permafrost thaw, altered precipitation regimes, and increased wildfires. This chapter will first focus on how climate change is changing the environment of Arctic and subarctic tundra and then focus on how climate change is altering tundra's carbon, nitrogen, and phosphorus cycles with a focus on soils. Overall, tundra soils are shifting from being a carbon sink into a carbon source as rising temperatures increase microbial activity—a positive feedback to climate change. However, those rising temperatures are also increasing nutrient mineralization rates, which could increase ecosystem carbon storage via enhanced plant productivity as well as increase emissions of nitrous oxide, a powerful greenhouse gas. There is currently a disconnect between the large soil carbon losses measured in many in situ experiments and the strong plant carbon gains predicted by models. Ultimately, more research is needed on the interplay between tundra soils, nutrients, and plants to determine the magnitude of tundra's feedback to climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-12
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in the surrounding and within different wind farms of the German Bight in April 2018. The sediment samples were taken by a box grab and analyzed for their grain size distribution by laser diffraction.
    Keywords: AT261; Atair; Atair261; Atair261_10_BC; Atair261_11_BC; Atair261_13_BC; Atair261_14_BC; Atair261_15_BC; Atair261_16_BC; Atair261_17_BC; Atair261_2_BC; Atair261_20_BC; Atair261_21_BC; Atair261_22_BC; Atair261_23_BC; Atair261_24_BC; Atair261_25_BC; Atair261_27_BC; Atair261_29_BC; Atair261_3_BC; Atair261_30_BC; Atair261_31_BC; Atair261_32_BC; Atair261_33_BC; Atair261_34_BC; Atair261_35_BC; Atair261_36_BC; Atair261_37_BC; Atair261_38_BC; Atair261_39_BC; Atair261_4_BC; Atair261_40_BC; Atair261_41_BC; Atair261_42_BC; Atair261_43_BC; Atair261_44_BC; Atair261_46_BC; Atair261_47_BC; Atair261_48_BC; Atair261_49_BC; Atair261_50_BC; Atair261_51_BC; Atair261_52_BC; Atair261_53_BC; Atair261_54_BC; Atair261_55_BC; Atair261_56_BC; Atair261_57_BC; Atair261_58_BC; Atair261_59_BC; Atair261_60_BC; Atair261_61_BC; Atair261_62_BC; Atair261_63_BC; Atair261_9_BC; BC; Box corer; Date/Time of event; DEPTH, sediment/rock; Elevation of event; Event label; German Bight; Helmholtz-Zentrum Hereon; Hereon; Laser diffraction particle size analyser; Latitude of event; Longitude of event; Sample ID; Size fraction 〈 0.020 mm; Size fraction 〈 0.063 mm, mud, silt+clay; Size fraction 〈 0.125 mm; Size fraction 〈 0.250 mm; Station_10_HELW3; Station_11_NOST1; Station_13_NOST3; Station_14_NOST4; Station_15_NOST5; Station_16_NOST6; Station_17_NOST7; Station_2_TI7; Station_20_AMWE2; Station_21_AMWE3; Station_22_AMWE4; Station_23_AMWE5; Station_24_AMWE6; Station_25_AMWE7; Station_27_AMWE9; Station_29_DOLW1; Station_3_MEWI1; Station_30_DOLW2; Station_31_DOLW3; Station_32_BKRI1; Station_33_BKRI2; Station_34_BKRI3; Station_35_BKRI4; Station_36_BKRI5; Station_37_ALVE2; Station_38_ALVE3; Station_39_ALVE1; Station_4_MEWI3; Station_40_ALVE4; Station_41_DOLW5; Station_42_DOLW6; Station_43_GOWI2; Station_44_GOWI3; Station_46_GOWI6; Station_47_GOWI7; Station_48_GOWI8; Station_49_GOWI9; Station_50_GOWI1; Station_51_GOWI4; Station_52_GOWI10; Station_53_GOWI11; Station_54_GOWI20; Station_55_GOWI21; Station_56_GOWI22; Station_57_GOWI23; Station_58_GOWI24; Station_59_GOWI25; Station_60_GOWI26; Station_61_GOWI27; Station_62_GOWI28; Station_63_GOWI29; Station_9_HELW2; Station label
    Type: Dataset
    Format: text/tab-separated-values, 312 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-12
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in the surrounding and within different wind farms of the German Bight in April 2018 within the context of the Hereon-BSH project OffChEm. The surface sediment samples were taken by a box grab, homogenized, freeze-dried and wet-sieved to gain the 〈20 µm grain size fraction. The 〈20 µm grain size fraction was acid digested and measured by ICP-MS/MS for their (trace) metal mass fractions. The Sr and Pb isotope ratios were measured by MC ICP-MS after an automated matrix separation with a prepFAST MC system.
    Keywords: Aluminium; Aluminium, limit of detection; Aluminium, limit of quantification; Aluminium, uncertainty; Antimony; Antimony, limit of detection; Antimony, limit of quantification; Antimony, uncertainty; Arsenic; Arsenic, limit of detection; Arsenic, limit of quantification; Arsenic, uncertainty; AT261; Atair; Atair261; Atair261_10_BC; Atair261_11_BC; Atair261_13_BC; Atair261_14_BC; Atair261_15_BC; Atair261_16_BC; Atair261_17_BC; Atair261_2_BC; Atair261_20_BC; Atair261_21_BC; Atair261_22_BC; Atair261_23_BC; Atair261_24_BC; Atair261_25_BC; Atair261_27_BC; Atair261_29_BC; Atair261_3_BC; Atair261_30_BC; Atair261_31_BC; Atair261_32_BC; Atair261_33_BC; Atair261_34_BC; Atair261_35_BC; Atair261_36_BC; Atair261_37_BC; Atair261_38_BC; Atair261_39_BC; Atair261_4_BC; Atair261_40_BC; Atair261_41_BC; Atair261_42_BC; Atair261_43_BC; Atair261_44_BC; Atair261_46_BC; Atair261_47_BC; Atair261_48_BC; Atair261_49_BC; Atair261_50_BC; Atair261_51_BC; Atair261_52_BC; Atair261_53_BC; Atair261_54_BC; Atair261_55_BC; Atair261_56_BC; Atair261_57_BC; Atair261_58_BC; Atair261_59_BC; Atair261_60_BC; Atair261_61_BC; Atair261_62_BC; Atair261_63_BC; Atair261_9_BC; Barium; Barium, limit of detection; Barium, limit of quantification; Barium, uncertainty; BC; Beryllium; Beryllium, limit of detection; Beryllium, limit of quantification; Beryllium, uncertainty; Bismuth; Bismuth, limit of detection; Bismuth, limit of quantification; Bismuth, uncertainty; Box corer; Cadmium; Cadmium, limit of detection; Cadmium, limit of quantification; Cadmium, uncertainty; Caesium; Caesium, limit of detection; Caesium, limit of quantification; Caesium, uncertainty; Calcium; Calcium, limit of detection; Calcium, limit of quantification; Calcium, uncertainty; Cerium; Cerium, limit of detection; Cerium, limit of quantification; Cerium, uncertainty; Chromium; Chromium, limit of detection; Chromium, limit of quantification; Chromium, uncertainty; Cobalt; Cobalt, limit of detection; Cobalt, limit of quantification; Cobalt, uncertainty; DATE/TIME; DEPTH, sediment/rock; Dysprosium; Dysprosium, limit of detection; Dysprosium, limit of quantification; Dysprosium, uncertainty; Element analysis grain size fraction 〈 20 microns via ICP-MS (total digest); ELEVATION; Erbium; Erbium, limit of detection; Erbium, limit of quantification; Erbium, uncertainty; Europium; Europium, limit of detection; Europium, limit of quantification; Europium, uncertainty; Event label; Gadolinium; Gadolinium, limit of detection; Gadolinium, limit of quantification; Gadolinium, uncertainty; Gallium; Gallium, limit of detection; Gallium, limit of quantification; Gallium, uncertainty; German Bight; Helmholtz-Zentrum Hereon; Hereon; Holmium; Holmium, limit of detection; Holmium, limit of quantification; Holmium, uncertainty; Indium; Indium, limit of detection; Indium, limit of quantification; Indium, uncertainty; Iron; Iron, limit of detection; Iron, limit of quantification; Iron, uncertainty; Lanthanum; Lanthanum, limit of detection; Lanthanum, limit of quantification; Lanthanum, uncertainty; LATITUDE; Lead; Lead, limit of detection; Lead, limit of quantification; Lead, uncertainty; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, uncertainty; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, uncertainty; Lead-207/Lead-206, uncertainty; Lead-207/Lead-206 ratio; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, uncertainty; Lead-208/Lead-206 ratio; Lead-208/Lead-206 ratio, uncertainty; Lead-208/Lead-207 ratio; Lead-208/Lead-207 ratio, uncertainty; Lithium; Lithium, limit of detection; Lithium, limit of quantification; Lithium, uncertainty; LONGITUDE; Lutetium; Lutetium, limit of detection; Lutetium, limit of quantification; Lutetium, uncertainty; Magnesium; Magnesium, limit of detection; Magnesium, limit of quantification; Magnesium, uncertainty; Manganese; Manganese, limit of detection; Manganese, limit of quantification; Manganese, uncertainty; Molybdenum; Molybdenum, limit of detection; Molybdenum, limit of quantification; Molybdenum, uncertainty; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II, Wrexham, UK; External intra-elemental calibration using NIST SRM 981; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II, Wrexham, UK; External intra-elemental calibration using NIST SRM 987; Neodymium; Neodymium, limit of detection; Neodymium, limit of quantification; Neodymium, uncertainty; Nickel; Nickel, limit of detection; Nickel, limit of quantification; Nickel, uncertainty; Potassium; Potassium, limit of detection; Potassium, limit of quantification; Potassium, uncertainty; Praseodymium; Praseodymium, limit of detection; Praseodymium, limit of quantification; Praseodymium, uncertainty; Rubidium; Rubidium, limit of detection; Rubidium, limit of quantification; Rubidium, uncertainty; Samarium; Samarium, limit of detection; Samarium, limit of quantification; Samarium, uncertainty; Sample ID; Sample method; Scandium; Scandium, limit of detection; Scandium, limit of quantification; Scandium, uncertainty; Silver; Silver, limit of detection; Silver, limit of quantification; Silver, uncertainty; Station_10_HELW3; Station_11_NOST1; Station_13_NOST3; Station_14_NOST4; Station_15_NOST5; Station_16_NOST6; Station_17_NOST7; Station_2_TI7; Station_20_AMWE2; Station_21_AMWE3; Station_22_AMWE4; Station_23_AMWE5; Station_24_AMWE6; Station_25_AMWE7; Station_27_AMWE9; Station_29_DOLW1; Station_3_MEWI1; Station_30_DOLW2; Station_31_DOLW3; Station_32_BKRI1; Station_33_BKRI2; Station_34_BKRI3; Station_35_BKRI4; Station_36_BKRI5; Station_37_ALVE2; Station_38_ALVE3; Station_39_ALVE1; Station_4_MEWI3; Station_40_ALVE4; Station_41_DOLW5; Station_42_DOLW6; Station_43_GOWI2; Station_44_GOWI3; Station_46_GOWI6; Station_47_GOWI7; Station_48_GOWI8; Station_49_GOWI9; Station_50_GOWI1; Station_51_GOWI4; Station_52_GOWI10; Station_53_GOWI11; Station_54_GOWI20; Station_55_GOWI21; Station_56_GOWI22; Station_57_GOWI23; Station_58_GOWI24; Station_59_GOWI25; Station_60_GOWI26; Station_61_GOWI27; Station_62_GOWI28; Station_63_GOWI29; Station_9_HELW2; Station label; Strontium; Strontium, limit of detection; Strontium, limit of quantification; Strontium, uncertainty; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, uncertainty; Terbium; Terbium, limit of detection; Terbium, limit of quantification; Terbium, uncertainty; Thallium; Thallium, limit of detection; Thallium, limit of quantification; Thallium, uncertainty; Thulium; Thulium, limit of detection; Thulium, limit of quantification; Thulium, uncertainty; Titanium; Titanium, limit of detection; Titanium, limit of quantification; Titanium, uncertainty; Tungsten; Tungsten, limit of detection; Tungsten, limit of quantification; Tungsten, uncertainty; Uranium; Uranium, limit of detection; Uranium, limit of quantification; Uranium, uncertainty; Vanadium; Vanadium, limit of detection; Vanadium, limit of quantification; Vanadium, uncertainty; Ytterbium; Ytterbium, limit of detection; Ytterbium, limit of quantification; Ytterbium, uncertainty; Zinc; Zinc, limit of detection; Zinc, limit of quantification; Zinc, uncertainty
    Type: Dataset
    Format: text/tab-separated-values, 9992 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-05
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in and around offshore wind farms of the German Bight between 06.03.2019 and 24.03.2019 within the context of the Hereon-BSH project OffChEm. The surface sediment samples were taken by a box grab, homogenized, freeze-dried and wet-sieved to gain the 〈20 µm grain size fraction. The 〈20 µm grain size fraction was acid digested and measured by ICP-MS/MS for their (trace) metal mass fractions. The Sr and Pb isotope ratios were measured by MC ICP-MS after an automated matrix separation with a prepFAST MCTM system.
    Keywords: Aluminium; Aluminium, limit of detection; Aluminium, limit of quantification; Aluminium, uncertainty; Arsenic; Arsenic, limit of detection; Arsenic, limit of quantification; Arsenic, uncertainty; AT275; AT275_Stat_S_097_HELW5; Atair; Atair275; Atair275_11; Atair275_12; Atair275_13; Atair275_14; Atair275_17; Atair275_18; Atair275_19; Atair275_2; Atair275_20; Atair275_21; Atair275_22; Atair275_23; Atair275_24; Atair275_25; Atair275_26; Atair275_27; Atair275_28; Atair275_29; Atair275_30; Atair275_31; Atair275_32; Atair275_33; Atair275_34; Atair275_35; Atair275_36; Atair275_39; Atair275_4; Atair275_40; Atair275_41; Atair275_42; Atair275_43; Atair275_44; Atair275_45; Atair275_46; Atair275_47; Atair275_48; Atair275_49; Atair275_5; Atair275_52; Atair275_53; Atair275_54; Atair275_55; Atair275_56; Atair275_57; Atair275_58; Atair275_60; Atair275_61; Atair275_62; Atair275_64; Atair275_65; Atair275_67; Atair275_68; Atair275_69; Atair275_7; Atair275_70; Atair275_71; Atair275_72; Atair275_73; Atair275_75; Atair275_78; Atair275_79; Atair275_8; Atair275_80; Atair275_81; Atair275_82; Atair275_83; Atair275_84; Atair275_85; Atair275_86; Atair275_87; Atair275_88; Atair275_89; Atair275_9; Atair275_91; Atair275_92; Atair275_93; Atair275_94; Atair275_95; Atair275_96; Atair275_97; Barium; Barium, limit of detection; Barium, limit of quantification; Barium, uncertainty; Beryllium; Beryllium, limit of detection; Beryllium, limit of quantification; Beryllium, uncertainty; Bismuth; Bismuth, limit of detection; Bismuth, limit of quantification; Bismuth, uncertainty; Cadmium; Cadmium, limit of detection; Cadmium, limit of quantification; Cadmium, uncertainty; Caesium; Caesium, limit of detection; Caesium, limit of quantification; Caesium, uncertainty; Calcium; Calcium, limit of detection; Calcium, limit of quantification; Calcium, uncertainty; Cerium; Cerium, limit of detection; Cerium, limit of quantification; Cerium, uncertainty; Chromium; Chromium, limit of detection; Chromium, limit of quantification; Chromium, uncertainty; Cobalt; Cobalt, limit of detection; Cobalt, limit of quantification; Cobalt, uncertainty; DEPTH, sediment/rock; Dysprosium; Dysprosium, limit of detection; Dysprosium, limit of quantification; Dysprosium, uncertainty; Element analysis grain size fraction 〈 20 microns via ICP-MS (total digest); Erbium; Erbium, limit of detection; Erbium, limit of quantification; Erbium, uncertainty; Europium; Europium, limit of detection; Europium, limit of quantification; Europium, uncertainty; Event label; Gadolinium; Gadolinium, limit of detection; Gadolinium, limit of quantification; Gadolinium, uncertainty; Gallium; Gallium, limit of detection; Gallium, limit of quantification; Gallium, uncertainty; Germanium; Germanium, limit of detection; Germanium, limit of quantification; Germanium, uncertainty; Helmholtz-Zentrum Hereon; Hereon; Holmium; Holmium, limit of detection; Holmium, limit of quantification; Holmium, uncertainty; Indium; Indium, limit of detection; Indium, limit of quantification; Indium, uncertainty; International Generic Sample Number; Iron; Iron, limit of detection; Iron, limit of quantification; Iron, uncertainty; Lanthanum; Lanthanum, limit of detection; Lanthanum, limit of quantification; Lanthanum, uncertainty; Lead; Lead, limit of detection; Lead, limit of quantification; Lead, uncertainty; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, uncertainty; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, uncertainty; Lead-207/Lead-206 ratio; Lead-207/Lead-206 ratio, uncertainty; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, uncertainty; Lead-208/Lead-206 ratio; Lead-208/Lead-206 ratio, uncertainty; Lead-208/Lead-207 ratio; Lead-208/Lead-207 ratio, uncertainty; Lithium; Lithium, limit of detection; Lithium, limit of quantification; Lithium, uncertainty; Lutetium; Lutetium, limit of detection; Lutetium, limit of quantification; Lutetium, uncertainty; Magnesium, limit of detection; Magnesium, limit of quantification; Magnesium, uncertainty; Manganese; Manganese, limit of detection; Manganese, limit of quantification; Manganese, uncertainty; Mercury; Mercury, limit of detection; Mercury, limit of quantification; Mercury, uncertainty; Molybdenum; Molybdenum, limit of detection; Molybdenum, limit of quantification; Molybdenum, uncertainty; MULT; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II, Wrexham, UK; External intra-elemental calibration using NIST SRM 981; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II, Wrexham, UK; External intra-elemental calibration using NIST SRM 987; Multiple investigations; Neodymium; Neodymium, limit of detection; Neodymium, limit of quantification; Neodymium, uncertainty; Nickel; Nickel, limit of detection; Nickel, limit of quantification; Nickel, uncertainty; Niobium; Niobium, limit of detection; Niobium, limit of quantification; Niobium, uncertainty; North Sea; Phosphorus; Phosphorus, limit of detection; Phosphorus, limit of quantification; Phosphorus, uncertainty; Potassium; Potassium, limit of detection; Potassium, limit of quantification; Potassium, uncertainty; Praseodymium; Praseodymium, limit of detection; Praseodymium, limit of quantification; Praseodymium, uncertainty; Rubidium; Rubidium, limit of detection; Rubidium, limit of quantification; Rubidium, uncertainty; S_002_AMWE4; S_004_AMWE3; S_005_AMWE7; S_007_AMWE5; S_008_AMWE6; S_009_AMWE15; S_011_AMWE19; S_012_AMWE20; S_013_AMWE21; S_014_AMWE22; S_017_NOST4; S_018_NOST1; S_019_NOST5; S_020_NOST6; S_021_NOST7; S_022_NOST3; S_023_NOST42; S_024_NOST43; S_025_NOST35; S_026_TI7; S_027_MEWI1; S_028_MEWI3; S_029_MEWI6; S_030_TI13; S_031_MEWI7; S_032_MEWI36; S_033_MEWI37; S_034_MEWI38; S_035_MEWI40; S_036_MEWI41; S_039_DOLW1; S_040_ALVE5; S_041_ALVE4; S_042_ALVE2; S_043_ALVE3; S_044_ALVE1; S_045_BKRI5; S_046_BKRI4; S_047_BKRI3; S_048_BKRI2; S_049_BKRI1; S_052_GOWI10; S_053_GOWI6; S_054_GOWI7; S_055_GOWI9; S_056_GOWI11; S_057_GOWI4; S_058_GOWI3; S_060_GOWI2; S_061_GOWI1; S_062_GOWI8; S_064_GOWI54; S_065_GOWI59; S_067_GOWI26; S_068_GOWI24; S_069_GOWI21; S_070_GOWI25; S_071_GOWI20; S_072_GOWI22; S_073_GOWI23; S_075_GOWI29; S_078_GOWI55; S_079_GOWI57; S_080_DOLW7; S_081_VEJA02; S_082_VEJA03; S_083_VEJA04; S_084_VEJA05; S_085_VEJA06; S_086_VEJA08; S_087_VEJA09; S_088_VEJA10; S_089_VEJA11; S_091_DOLW8; S_092_DOLW10; S_093_DOLW9; S_094_VEJA16; S_095_HELW1; S_096_HELW4; Samarium; Samarium, limit of detection; Samarium, limit of quantification; Samarium, uncertainty; Sample code/label; Sample method; Scandium; Scandium, limit of detection; Scandium, limit of quantification; Scandium, uncertainty; Selenium; Selenium, limit of detection; Selenium, limit of quantification; Selenium, uncertainty; Silver; Silver, limit of detection; Silver, limit of quantification; Silver, uncertainty; Sodium; Sodium, limit of detection; Sodium, limit of quantification; Sodium, uncertainty; Station label; Strontium; Strontium, limit of detection; Strontium, limit of quantification; Strontium, uncertainty; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, uncertainty; Tantalum; Tantalum, limit of detection; Tantalum, limit of quantification; Tantalum, uncertainty; Tellurium; Tellurium, limit of detection; Tellurium, limit of quantification; Tellurium, uncertainty; Terbium; Terbium, limit of detection; Terbium, limit of quantification; Terbium, uncertainty; Thallium; Thallium, limit of detection; Thallium, limit of quantification; Thallium, uncertainty; Thorium; Thorium, limit of detection; Thorium, limit of quantification; Thorium, uncertainty; Thulium; Thulium, limit of detection; Thulium, limit of quantification; Thulium, uncertainty; Titanium; Titanium, limit of detection; Titanium, limit of quantification; Titanium, uncertainty; Tungsten; Tungsten, limit of detection; Tungsten, limit of quantification; Tungsten, uncertainty; Uranium; Uranium, limit of detection; Uranium, limit of quantification; Uranium, uncertainty; Vanadium; Vanadium, limit of detection; Vanadium, limit
    Type: Dataset
    Format: text/tab-separated-values, 17568 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-05
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in and around offshore wind farms of the German Bight between 06.03.2019 and 24.03.2019.
    Keywords: ALTITUDE; AT275; AT275_Stat_S_097_HELW5; Atair; Atair275; Atair275_11; Atair275_12; Atair275_13; Atair275_14; Atair275_15; Atair275_16; Atair275_17; Atair275_18; Atair275_19; Atair275_2; Atair275_20; Atair275_21; Atair275_22; Atair275_23; Atair275_24; Atair275_25; Atair275_26; Atair275_27; Atair275_28; Atair275_29; Atair275_30; Atair275_31; Atair275_32; Atair275_33; Atair275_34; Atair275_35; Atair275_36; Atair275_39; Atair275_4; Atair275_40; Atair275_41; Atair275_42; Atair275_43; Atair275_44; Atair275_45; Atair275_46; Atair275_47; Atair275_48; Atair275_49; Atair275_5; Atair275_52; Atair275_53; Atair275_54; Atair275_55; Atair275_56; Atair275_57; Atair275_58; Atair275_6; Atair275_60; Atair275_61; Atair275_62; Atair275_64; Atair275_65; Atair275_67; Atair275_68; Atair275_69; Atair275_7; Atair275_70; Atair275_71; Atair275_72; Atair275_73; Atair275_75; Atair275_78; Atair275_79; Atair275_8; Atair275_80; Atair275_81; Atair275_82; Atair275_83; Atair275_84; Atair275_85; Atair275_86; Atair275_87; Atair275_88; Atair275_89; Atair275_9; Atair275_90; Atair275_91; Atair275_92; Atair275_93; Atair275_94; Atair275_95; Atair275_96; Atair275_97; Conductivity; Date/Time of event; DEPTH, water; Elevation of event; Event label; Helmholtz-Zentrum Hereon; Hereon; Latitude of event; Longitude of event; MULT; Multimeter; Multiple investigations; North Sea; Oxygen, dissolved; pH; Pressure, atmospheric; S_002_AMWE4; S_004_AMWE3; S_005_AMWE7; S_006_ANWE8; S_007_AMWE5; S_008_AMWE6; S_009_AMWE15; S_011_AMWE19; S_012_AMWE20; S_013_AMWE21; S_014_AMWE22; S_015_NOST4_WH; S_016_HELW1_WH; S_017_NOST4; S_018_NOST1; S_019_NOST5; S_020_NOST6; S_021_NOST7; S_022_NOST3; S_023_NOST42; S_024_NOST43; S_025_NOST35; S_026_TI7; S_027_MEWI1; S_028_MEWI3; S_029_MEWI6; S_030_TI13; S_031_MEWI7; S_032_MEWI36; S_033_MEWI37; S_034_MEWI38; S_035_MEWI40; S_036_MEWI41; S_039_DOLW1; S_040_ALVE5; S_041_ALVE4; S_042_ALVE2; S_043_ALVE3; S_044_ALVE1; S_045_BKRI5; S_046_BKRI4; S_047_BKRI3; S_048_BKRI2; S_049_BKRI1; S_052_GOWI10; S_053_GOWI6; S_054_GOWI7; S_055_GOWI9; S_056_GOWI11; S_057_GOWI4; S_058_GOWI3; S_060_GOWI2; S_061_GOWI1; S_062_GOWI8; S_064_GOWI54; S_065_GOWI59; S_067_GOWI26; S_068_GOWI24; S_069_GOWI21; S_070_GOWI25; S_071_GOWI20; S_072_GOWI22; S_073_GOWI23; S_075_GOWI29; S_078_GOWI55; S_079_GOWI57; S_080_DOLW7; S_081_VEJA02; S_082_VEJA03; S_083_VEJA04; S_084_VEJA05; S_085_VEJA06; S_086_VEJA08; S_087_VEJA09; S_088_VEJA10; S_089_VEJA11; S_090_VEJA12; S_091_DOLW8; S_092_DOLW10; S_093_DOLW9; S_094_VEJA16; S_095_HELW1; S_096_HELW4; Sample ID; Station label; Temperature, air; Temperature, water; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 908 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-05
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in and around offshore wind farms of the German Bight between 06.03.2019 and 24.03.2019.
    Keywords: Helmholtz-Zentrum Hereon; Hereon
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-05
    Description: Offshore wind energy is a steadily growing sector contributing to the worldwide energy production. The impact of these offshore constructions on the marine environment, however, remains unclear in many aspects. In fact, little is known about potential emissions from corrosion protection systems such as organic coatings or galvanic anodes composed of Al and Zn alloys, used to protect offshore structures. In order to assess potential chemical emissions from offshore wind farms and their impact on the marine environment water and sediment samples were taken in and around offshore wind farms of the German Bight between 06.03.2019 and 24.03.2019 within the context of the Hereon-BSH project OffChEm. The water samples were taken in metal-free GO-FLO sampling bottles, filtered over 〈0.45 µm polycarbonate filters into pre-cleaned LDPE bottles and acidified with nitric acid. The filtrates were then measured for their (trace) metal concentrations with ICP-MS/MS coupled online to a seaFAST preconcentration and matrix removal system.
    Keywords: Aluminium; Aluminium, standard deviation; AT275; AT275_Stat_S_097_HELW5; Atair; Atair275; Atair275_11; Atair275_12; Atair275_13; Atair275_14; Atair275_15; Atair275_16; Atair275_17; Atair275_18; Atair275_19; Atair275_2; Atair275_20; Atair275_21; Atair275_22; Atair275_23; Atair275_24; Atair275_25; Atair275_26; Atair275_27; Atair275_28; Atair275_29; Atair275_30; Atair275_31; Atair275_32; Atair275_33; Atair275_34; Atair275_35; Atair275_36; Atair275_39; Atair275_4; Atair275_40; Atair275_41; Atair275_42; Atair275_43; Atair275_44; Atair275_45; Atair275_46; Atair275_47; Atair275_48; Atair275_49; Atair275_5; Atair275_52; Atair275_53; Atair275_54; Atair275_55; Atair275_56; Atair275_57; Atair275_58; Atair275_6; Atair275_60; Atair275_61; Atair275_64; Atair275_65; Atair275_67; Atair275_68; Atair275_69; Atair275_7; Atair275_70; Atair275_71; Atair275_72; Atair275_73; Atair275_75; Atair275_78; Atair275_79; Atair275_8; Atair275_80; Atair275_81; Atair275_82; Atair275_83; Atair275_84; Atair275_85; Atair275_86; Atair275_87; Atair275_88; Atair275_89; Atair275_9; Atair275_90; Atair275_91; Atair275_92; Atair275_93; Atair275_94; Atair275_95; Atair275_96; Atair275_97; Cadmium; Cadmium, standard deviation; Cerium; Cerium, standard deviation; Cobalt; Cobalt, standard deviation; Copper; Copper, standard deviation; Date/Time of event; DEPTH, water; Dysprosium; Dysprosium, standard deviation; Elevation of event; Erbium; Erbium, standard deviation; Europium; Europium, standard deviation; Event label; Gadolinium; Gadolinium, anthropogenic; Gadolinium, anthropogenic, uncertainty; Gadolinium, standard deviation; Gadolinium anomaly; Gadolinium anomaly, uncertainty; Gallium; Gallium, standard deviation; Helmholtz-Zentrum Hereon; Hereon; Holmium; Holmium, standard deviation; ICP-MS, Elemental Scientific, seaFAST; Indium; Indium, standard deviation; International Generic Sample Number; Iron; Iron, standard deviation; Lanthanum; Lanthanum, standard deviation; Latitude of event; Lead; Lead, standard deviation; Longitude of event; Lutetium; Lutetium, standard deviation; Manganese; Manganese, standard deviation; Molybdenum; Molybdenum, standard deviation; MULT; Multiple investigations; Neodymium; Neodymium, standard deviation; Nickel; Nickel, standard deviation; North Sea; Praseodymium; Praseodymium, standard deviation; Quality assessment; S_002_AMWE4; S_004_AMWE3; S_005_AMWE7; S_006_ANWE8; S_007_AMWE5; S_008_AMWE6; S_009_AMWE15; S_011_AMWE19; S_012_AMWE20; S_013_AMWE21; S_014_AMWE22; S_015_NOST4_WH; S_016_HELW1_WH; S_017_NOST4; S_018_NOST1; S_019_NOST5; S_020_NOST6; S_021_NOST7; S_022_NOST3; S_023_NOST42; S_024_NOST43; S_025_NOST35; S_026_TI7; S_027_MEWI1; S_028_MEWI3; S_029_MEWI6; S_030_TI13; S_031_MEWI7; S_032_MEWI36; S_033_MEWI37; S_034_MEWI38; S_035_MEWI40; S_036_MEWI41; S_039_DOLW1; S_040_ALVE5; S_041_ALVE4; S_042_ALVE2; S_043_ALVE3; S_044_ALVE1; S_045_BKRI5; S_046_BKRI4; S_047_BKRI3; S_048_BKRI2; S_049_BKRI1; S_052_GOWI10; S_053_GOWI6; S_054_GOWI7; S_055_GOWI9; S_056_GOWI11; S_057_GOWI4; S_058_GOWI3; S_060_GOWI2; S_061_GOWI1; S_064_GOWI54; S_065_GOWI59; S_067_GOWI26; S_068_GOWI24; S_069_GOWI21; S_070_GOWI25; S_071_GOWI20; S_072_GOWI22; S_073_GOWI23; S_075_GOWI29; S_078_GOWI55; S_079_GOWI57; S_080_DOLW7; S_081_VEJA02; S_082_VEJA03; S_083_VEJA04; S_084_VEJA05; S_085_VEJA06; S_086_VEJA08; S_087_VEJA09; S_088_VEJA10; S_089_VEJA11; S_090_VEJA12; S_091_DOLW8; S_092_DOLW10; S_093_DOLW9; S_094_VEJA16; S_095_HELW1; S_096_HELW4; Samarium; Samarium, standard deviation; Sample code/label; Station label; Terbium; Terbium, standard deviation; Thulium; Thulium, standard deviation; Tin; Tungsten; Tungsten, standard deviation; Uranium; Uranium, standard deviation; Vanadium; Vanadium, standard deviation; Ytterbium; Ytterbium, standard deviation; Yttrium; Yttrium, standard deviation; Zinc; Zinc, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 5499 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...