ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • Alfred Wegener Institute for Polar and Marine Research
  • Geological Society of London
  • Springer
  • 2020-2024  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Located on the Hellenic Arc, the Christiana-Santorini-Kolumbo (CSK) rift zone represents one of the most active and hazardous volcano-tectonic systems in the Mediterranean. Although this rift zone has been intensively studied, its tectonic evolution and the interplay of volcanism and tectonism are still poorly understood. In this study, we use high-resolution reflection seismic imagery to reconstruct the opening of the rift basins. For the first time, we relate the activity of individual faults with the activity of specific volcanic centers in space and time. Our analysis shows a pre-volcanic NNE-SSW-oriented paleo basin underneath the CSK volcanoes, representing a transfer zone between Pliocene ESE-WNW-oriented basins, which was overprinted by a NE-SW-oriented tectonic regime hosting Late Pliocene volcanism that initiated at the Christiana Volcano. All subsequent volcanoes evolved parallel to this trend. Two major Pleistocene tectonic pulses preceded fundamental changes in the volcanism of the CSK rift including the occurrence of widespread small-scale volcanic centers followed by focusing of activity at Santorini with increasing explosivity. The observed correlation between changes in the tectonic system and the magmatism of the CSK volcanoes suggests a deep-seated tectonic control of the volcanic plumbing system. In turn, our analysis reveals the absence of large-scale faults in basin segments affected by volcanism indicating a secondary feedback mechanism on the tectonic system. A comparison with the evolution of the neighboring Kos-Nisyros-Yali volcanic field zone and Rhodos highlights concurrent regional volcano-tectonic changes, suggesting a potential arc-wide scale of the observed volcano-tectonic interplay. Key Points We reconstruct the volcano-tectonic evolution of the Christiana-Santorini-Kolumbo rift zone using multichannel seismic data The overprint of a Pleistocene NE-SW striking fault system on a Pliocene E-W oriented system initiated the emergence of volcanism Regional tectonics had a primary control on the volcanic plumbing system, while magmatism had a secondary influence on the tectonic system
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Volcanic island sector collapses have the potential to trigger devastating tsunamis and volcanic eruptions that threaten coastal communities and infrastructure. Considered one of the most hazardous volcano-tectonic regions in the world, the Christiana-Santorini-Kolumbo Volcanic Field (CSKVF) lies in the South Aegean Sea in an active rift zone. Previous studies identified an enigmatic voluminous mass-transport deposit west and east of Santorini emplaced during the early evolution of the edifice. However, the distribution and volume as well as the nature and emplacement dynamics of this deposit remained unknown up to now. In this study, we use an extensive dataset of high-resolution seismic profiles to unravel the distribution and internal architecture of this deposit. We show that it is located in all basins surrounding Santorini and has a bulk volume of up to 125 km3, thus representing the largest known volcanic island mass-transport deposit in the entire Mediterranean Sea. We propose that the deposit is the result of a complex geohazard cascade that was initiated by an intensive rift pulse. This rifting event triggered a series of smaller precursory mass-transport events before large-scale sector collapses occurred on the northeastern flank of the extinct Christiana Volcano and on the southeastern flank of the nascent Santorini. This was followed by the emplacement of large-scale secondary sediment failures on the slopes of Santorini, which transitioned into debris and turbidity flows that traveled far into the neighboring rift basins. Following this cascade, a distinct change in the volcanic behavior of the CSKVF occurred, suggesting a close relationship between crustal extension, mass transport, and volcanism. Cascading geohazards seem to be more common in the evolution of marine volcanic systems than previously appreciated. Wider awareness and a better understanding of cascading effects are crucial for more holistic hazard assessments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...