ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Weather and climate variations on subseasonal to decadal time scales can have enormous social, economic, and environmental impacts, making skillful predictions on these time scales a valuable tool for decision-makers. As such, there is a growing interest in the scientific, operational, and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) time scales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) time scales, while the focus broadly remains similar (e.g., on precipitation, surface and upper-ocean temperatures, and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal variability and externally forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correction, calibration, and forecast quality assessment; model resolution; atmosphere-ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end-user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Programme (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s-1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent re-circulation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Marine heatwaves along the coast ofWestern Australia, referred to as Ningaloo Niño, have had dramatic impacts on the ecosystem in the recent decade. A number of local and remote forcing mechanisms have been put forward, however little is known about the depth structure of such temperature extremes. Utilizing an eddy-active global Ocean General Circulation Model, Ningaloo Niño and the corresponding cold Ningaloo Niña events are investigated between 1958-2016, with focus on their depth structure. The relative roles of buoyancy and wind forcing are inferred from sensitivity experiments. Composites reveal a strong symmetry between cold and warm events in their vertical structure and associated large-scale spatial patterns. Temperature anomalies are largest at the surface, where buoyancy forcing is dominant and extend down to 300m depth (or deeper), with wind forcing being the main driver. Large-scale subsurface anomalies arise from a vertical modulation of the thermocline, extending from the western Pacific into the tropical eastern Indian Ocean. The strongest Ningaloo Niños in 2000 and 2011 are unprecedented compound events, where long-lasting high temperatures are accompanied by extreme freshening, which emerges in association with La Niñas, more common and persistent during the negative phase of the Interdecadal Pacific Oscillation. It is shown that Ningaloo Niños during La Nina phases have a distinctively deeper reach and are associated with a strengthening of the Leeuwin Current, while events during El Niño are limited to the surface layer temperatures, likely driven by local atmosphere-ocean feedbacks, without a clear imprint on salinity and velocity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Enhanced Southern Ocean ventilation in recent decades has been suggested to be a relevant modulator of the observed changes in ocean heat and carbon uptake. This study focuses on the Southern Ocean midlatitude ventilation changes from the 1960s to the 2010s. A global 1/4° configuration of the NEMO–Louvain-la-Neuve sea ice model, version 2 (LIM2), including the inert tracer CFC-12 (a proxy of ocean ventilation) is forced with the CORE, phase II (CORE-II), and JRA-55 driving ocean (JRA55-do) atmospheric reanalyses. Sensitivity experiments, where the variability of wind stress and/or the buoyancy forcing is suppressed on interannual time scales, are used to unravel the mechanisms driving ventilation changes. Ventilation changes are estimated by comparing CFC-12 interior inventories among the different experiments. All simulations suggest a multidecadal fluctuation of Southern Ocean ventilation, with a decrease until the 1980s–90s and a subsequent increase. This evolution is related to the atmospheric forcing and is caused by the (often counteracting) effects of wind stress and buoyancy forcing. Until the 1980s, increased buoyancy gains caused the ventilation decrease, whereas the subsequent ventilation increase was driven by strengthened wind stress causing deeper mixed layers and a stronger meridional overturning circulation. Wind stress emerges as the main driver of ventilation changes, even though buoyancy forcing modulates its trend and decadal variability. The three Southern Ocean basins take up CFC-12 in distinct density intervals but overall respond similarly to the atmospheric forcing. This study suggests that Southern Ocean ventilation is expected to increase as long as the effect of increasing Southern Hemisphere wind stress overwhelms that of increased stratification.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Two decades of high-resolution satellite observations and climate modeling studies have indicated strong ocean–atmosphere coupled feedback mediated by ocean mesoscale processes, including semipermanent and meandrous SST fronts, mesoscale eddies, and filaments. The air–sea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this so-called mesoscale air–sea interaction are robust near the major western boundary currents, Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous over the global oceans wherever ocean mesoscale processes are active. Current theories, informed by rapidly advancing observational and modeling capabilities, have established the importance of mesoscale and frontal-scale air–sea interaction processes for understanding large-scale ocean circulation, biogeochemistry, and weather and climate variability. However, numerous challenges remain to accurately diagnose, observe, and simulate mesoscale air–sea interaction to quantify its impacts on large-scale processes. This article provides a comprehensive review of key aspects pertinent to mesoscale air–sea interaction, synthesizes current understanding with remaining gaps and uncertainties, and provides recommendations on theoretical, observational, and modeling strategies for future air–sea interaction research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Trematode prevalence and abundance in hosts are known to be affected by biotic drivers as well as by abiotic drivers. In this study, we used the unique salinity gradient found in the south-western Baltic Sea to: (i) investigate patterns of trematode infections in the first intermediate host, the periwinkle Littorina littorea and in the downstream host, the mussel Mytilus edulis, along a regional salinity gradient (from 13 to 22) and (ii) evaluate the effects of first intermediate host (periwinkle) density, host size and salinity on trematode infections in mussels. Two species dominated the trematode community, Renicola roscovita and Himasthla elongata. Salinity, mussel size and density of infected periwinkles were significantly correlated with R. roscovita, and salinity and density correlated with H. elongata abundance. These results suggest that salinity, first intermediate host density and host size play an important role in determining infection levels in mussels, with salinity being the main major driver. Under expected global change scenarios, the predicted freshening of the Baltic Sea might lead to reduced trematode transmission, which may be further enhanced by a potential decrease in periwinkle density and mussel size.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The extratropical effect of the quasi-biennial oscillation (QBO), known as the Holton-Tan effect, is manifest as a weaker, warmer winter Arctic polar vortex during the east QBO phase. While previous studies have shown that the extratropical QBO signal is caused by the modified propagation of planetary waves in the stratosphere, the mechanism dominating the onset and seasonal development of the Holton-Tan effects remains unclear. Here, the governing wave-mean flow dynamics of the early winter extratropical QBO signal onset and its reversibility is investigated on a synoptic time scale with a finite-amplitude diagnostic using reanalysis and a chemistry-climate model. The extratropical QBO signal onset in October is found to primarily result from modulated stratospheric life cycles of wave pulses entering the stratosphere from the troposphere, rather than from a modulation of their tropospheric wave source. A comprehensive analysis of the wave activity budget during fall, when the stratospheric winter polar vortex starts forming and waves start propagating up into the stratosphere, shows significant differences. During the east QBO phase, the deceleration of the mid-high-latitude stratospheric zonal-mean jet by the upward-propagating wave pulses is less reversible, due to stronger dissipation processes, while during the west phase, a more reversible deceleration of the main polar vortex is found owing to the waves being dissipated at lower latitudes, accompanied by a weak but different response of the tropospheric subtropical jet. From this synoptic wave-event viewpoint, the early season onset of the Holton-Tan effect results from the cumulative effect of the QBO dependent wave-induced deceleration during the life cycle of individual upward wave pulses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-08
    Description: State of the climate in 2019
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...