ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (2)
  • American Meteorological Society  (1)
  • 2020-2024  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Ridging South Atlantic Anticyclones contribute an important amount of precipitation over South Africa. Here, we use a global coupled climate model and the ERA5 reanalysis to separate for the first time ridging highs (RHs) based on whether they occur together with Rossby wave breaking (RWB) or not. We show that the former type of RHs are associated with more precipitation than the latter type. The mean sea level pressure anomalies caused by the two types of RHs are characterized by distinct patterns, leading to differences in the flow of moisture-laden air onto land. We additionally find that RWB mediates the effect of climate change on RHs during the twenty-first century. Consequently, RHs occurring without RWB exhibit little change, while those occurring with RWB contribute more precipitation over the southern and less precipitation over the northeastern South Africa in the future. Key Points: - Ridging South Atlantic Anticyclones are accompanied by Rossby wave breaking (RWB) aloft in 44% of the cases - Ridging highs that are accompanied by RWB lead to more precipitation over South Africa than those that are not - Ridging highs bring more precipitation over the southern and less precipitation over the northeastern part of South Africa in the future
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-01
    Description: The recent severe European summer heat waves of 2015 and 2018 co-occurred with cold subpolar North Atlantic (NA) sea surface temperatures (SSTs). However, a significant connection between this oceanic state and European heat waves was not yet established. We performed two AMIP-like model experiments: (a) employing daily 2018 SSTs as observed and (b) applying a novel approach to remove the negative NA SST anomaly, while keeping SST daily and small-scale variability. Comparing these experiments, we find that cold subpolar NA SSTs significantly increase heat wave duration and magnitude downstream over the European continent. Surface temperature and circulation anomalies are connected by the upper-tropospheric summer wave pattern of meridional winds over the North Atlantic European sector, which is enhanced with cold NA SSTs. Our results highlight the relevance of the subpolar NA region for European summer conditions, a region that is marked by large biases in current coupled climate model simulations. Key Points: - Model study designed to investigate the ocean impact on European heat waves by prescribing observed and realistic ocean surface conditions - Cold subpolar North Atlantic sea surface temperatures significantly enhance heat wave intensity and duration over the European continent - North Atlantic ocean and European surface temperature and circulation anomalies are bridged by the upper-tropospheric summer mean wave
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-13
    Description: The extratropical effect of the quasi-biennial oscillation (QBO), known as the Holton-Tan effect, is manifest as aweaker, warmer winter Arctic polar vortex during the east QBO phase. While previous studies have shown that the extratropical QBO signal is caused by the modified propagation of planetary waves in the stratosphere, the mechanism dominating the onset and seasonal development of the Holton-Tan effects remains unclear. Here, the governing wave-mean flow dynamics of the early winter extratropical QBO signal onset and its reversibility is investigated on a synoptic timescale with a finite-amplitude diagnostic using reanalysis and a chemistry-climate model. The extratropical QBO signal onset in October is found to primarily result from modulated stratospheric life-cycles of wave pulses entering the stratosphere from the troposphere, rather than from a modulation of their tropospheric wave source. A comprehensive analysis of the wave activity budget during fall, when the stratospheric winter polar vortex starts forming and waves start propagating up into the stratosphere, shows significant differences. During the east QBO phase, the deceleration of the mid-high latitude stratospheric zonal mean jet by the upward propagating wave pulses is less reversible, due to stronger dissipation processes, while during the west phase, a more reversible deceleration of the main polar vortex is found owing to the waves being dissipated at lower latitudes, accompanied by a weak but different response of the tropospheric subtropical jet. From this synoptic wave-event viewpoint, the early season onset of the Holton-Tan effect results from the cumulative effect of the QBO dependent wave-induced deceleration during the life cycle of individual upward wave pulses.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...