ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (8)
  • 2020-2024  (8)
  • 1930-1934
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2023-02-07
    Description: This dataset includes organic carbon measurements on sediment samples collected in Bute Inlet (British Columbia, Canada) in October 2016 (cruise number PGC2016007) and October 2017 (cruise number PGC2017005) aboard the research vessel CCGS Vector. The cruise PGC2016007 took place between 7 October and 17 October 2016 and was led by Gwyn Lintern. The cruise PGC2017005 took place between 19 and 29 October and was led by Cooper Stacey. River samples were taken in the Homathko and Southgate rivers using Niskin bottles in the water column and a grab sampler in the river beds and the river deltas
    Keywords: Age, 14C AMS; Age, dated; Bottle, Niskin; Bute Inlet, British Columbia, Canada; Carbon, organic, total; DEPTH, sediment/rock; DEPTH, water; Environment; Event label; fjords; Grab; GRAB; Latitude of event; Longitude of event; NIS; organic carbon (OC); Percentile 50; Percentile 90; PGC-2017-005; PGC-2017-005_RB16; PGC-2017-005_RB22; PGC-2017-005_RB24; PGC-2017-005_RBL18; PGC-2017-005_RD12; PGC-2017-005_RD14; PGC-2017-005_RD6; PGC-2017-005_RD8; PGC-2017-005_RP11; PGC-2017-005_RP13; PGC-2017-005_RP15; PGC-2017-005_RP16; PGC-2017-005_RP17; PGC-2017-005_RP19; PGC-2017-005_RP7; PGC-2017-005_RP9; PGC-2017-005_RW23; PGC-2017-005_SS18; PGC-2017-005_SS20; River; sediment; submarine canyon; Vector; δ13C, organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 118 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-07
    Description: This dataset includes organic carbon measurements on sediment samples collected in Bute Inlet (British Columbia, Canada) in October 2016 (cruise number PGC2016007) and October 2017 (cruise number PGC2017005) aboard the research vessel CCGS Vector. The cruise PGC2016007 took place between 7 October and 17 October 2016 and was led by Gwyn Lintern. The cruise PGC2017005 took place between 19 and 29 October and was led by Cooper Stacey. Marine sediment samples were collected in Bute Inlet using a box corer for the sandy samples in the submarine channel and a piston corer for the muddy samples in the overbanks and distal basin.
    Keywords: 1; 10; 11; 12; 13; 14; 15; 2; 3; 4; 5; 6; 7; 8; 9; Age, 14C AMS; Age, dated; BC; Box corer; Bute Inlet, British Columbia, Canada; Carbon, organic, total; Core; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Elevation of event; Event label; fjords; Latitude of event; Longitude of event; Method/Device of event; organic carbon (OC); PC; Percentile 50; Percentile 90; PGC-2016-003; PGC-2016-003_STN01; PGC-2016-007; PGC-2016-007_STN010; PGC-2016-007_STN014; PGC-2016-007_STN015; PGC-2016-007_STN019; PGC-2016-007_STN020; PGC-2016-007_STN021; PGC-2016-007_STN025; PGC-2016-007_STN026; PGC-2016-007_STN028; PGC-2016-007_STN029; PGC-2016-007_STN030; PGC-2016-007_STN031; PGC-2016-007_STN032; PGC-2016-007_STN036; PGC-2016-007_STN09; Piston corer; sediment; Sub-Environment; submarine canyon; Vector; δ13C, organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 516 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-12-14
    Description: A suite of eight glassy rims and six crystalline interiors from pillowed basalts was collected from within the Mid-Atlantic Ridge rift valley between 25°N and 30°N during Trans-Atlantic Geotraverse (TAG) NOAA cruises using the R/V Discoverer. Radiochemical neutron activation analysis has been used to determine Tl, Rb. Cs. Co and Cr. Major element and S analyses of the glasses were determined by electron probe microanalysts of small polished chips of glass.
    Keywords: Aluminium oxide; Atlantic Ocean; Caesium; Calcium oxide; Chromium; Cobalt; Discoverer (1966); Dredge; DRG; Electron Probe Microanalysis (EPMA); Elevation of event; Event label; Geochemistry; Identification; Iron oxide, FeO; Latitude of event; Longitude of event; Magnesium oxide; manganese micronodule; manganese nodule; Manganese oxide; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; ocean; Potassium oxide; Radiochemical neutron activation analysis (RNAA); Rock type; Rubidium; Sample type; sediment; Silicon dioxide; Sodium oxide; Sulfur; T3-71-10C; T3-71-7A; T3-72-16; T3-72-17; T4-73-6; TAG1971; TAG1971-10C; TAG1971-7A; TAG1972; TAG1972-16; TAG1972-17; TAG1973; TAG1973-6A; Thallium; Titanium dioxide; Trans-Atlantic Geotraverse 1971; Trans-Atlantic Geotraverse 1972; Trans-Atlantic Geotraverse 1973
    Type: Dataset
    Format: text/tab-separated-values, 188 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-14
    Description: A suite of three palagonites from pillowed basalts collected from within the Mid-Atlantic Ridge rift valley between 25°N and 30°N wer analysed along with another suite of two hydrothermally altered basaltic breccias and four hydrothermal manganese crusts collected from the TAG hydrothermal field at 26°N on the Mid-Atlantic Ridge. These specimen were collected during Trans-Atlantic Geotraverse (TAG) NOAA cruises using the R/V Discoverer. Two more hydrogenous ferromanganese crusts wer also analysed. They were collected from the eastern extension of the Atlantis Fracture Zone aboard the R/V Kurchatov in 1975. Radiochemical neutron activation analysis has been used to determine Tl, Rb. Cs. Co and Cr. Iron, Mn, and Mg concentrations in the crystalline samples and Mn crusts have been determined by AAS. K was determined by flame photometry, and S in these samples (as well as five glasses) has been determined with a Leco Automatic Sulfur titrator.
    Keywords: AK20-T0-75-1A; Akademik Kurchatov; AKU20; Aluminium oxide; Atlantic Ocean; Atomic absorption spectrophotometry; Caesium; Chromium; Cobalt; Discoverer (1966); Dredge; Dredge, chain bag; DRG; DRG_C; Elevation of event; Event label; Flame photometry; Geochemistry; Identification; Iron oxide, FeO; Latitude of event; Leco Automatic Sulfur titrator; Longitude of event; Magnesium oxide; manganese micronodule; manganese nodule; Manganese oxide; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; ocean; Potassium oxide; Radiochemical neutron activation analysis (RNAA); Rock type; Rubidium; Sample type; sediment; Sulfur; T0-75-1A; T3-71D 148-2B; T3-72-17; T4-73-2A3; T4-73-6; TAG1971; TAG1971-2B; TAG1972; TAG1972-17; TAG1973; TAG1973-2A; TAG1973-6A; Thallium; Trans-Atlantic Geotraverse 1971; Trans-Atlantic Geotraverse 1972; Trans-Atlantic Geotraverse 1973
    Type: Dataset
    Format: text/tab-separated-values, 121 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Description: Experiments with coral fragments (i.e. nubbins) have shown that net calcification is depressed by elevated PCO2. Evaluating the implications of this finding requires scaling of results from nubbins to colonies, yet the experiments to codify this process have not been carried out. Building from our previous research demonstrating that net calcification of Pocillopora verrucosa (2–13 cm diameter) was unaffected by PCO2 (400 and 1000 µatm) and temperature (26.5 and 29.7°C), we sought generality to this outcome by testing how colony size modulates PCO2 and temperature sensitivity in a branching acroporid. Together, these taxa represent two of the dominant lineages of branching corals on Indo-Pacific coral reefs. Two trials conducted over 2 years tested the hypothesis that the seasonal range in seawater temperature (26.5 and 29.2°C) and a future PCO2 (1062 µatm versus an ambient level of 461 µatm) affect net calcification of an ecologically relevant size range (5–20 cm diameter) of colonies of Acropora hyacinthus. As for P. verrucosa, the effects of temperature and PCO2 on net calcification (mg day−1) of A. verrucosa were not statistically detectable. These results support the generality of a null outcome on net calcification of exposing intact colonies of branching corals to environmental conditions contrasting seasonal variation in temperature and predicted future variation in PCO2. While there is a need to expand beyond an experimental culture relying on coral nubbins as tractable replicates, rigorously responding to this need poses substantial ethical and logistical challenges.
    Keywords: Acropora hyacinthus; Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Area; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Diameter; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Irradiance; Irradiance, standard error; Laboratory experiment; Moorea_north_shore; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Potentiometric; Potentiometric titration; Registration number of species; Replicates; Salinity; Salinity, standard error; Single species; Size; South Pacific; Species; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Tropical; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1334 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-15
    Description: Coral reefs are threatened by ocean acidification (OA), which depresses net calcification of corals, calcified algae, and coral reef communities. These effects have been quantified for many organisms, but most experiments last weeks-to-months, and do not test for effects on community structure. Here, the effects of OA on back reef communities from Mo'orea, French Polynesia (17.492 S, 149.826 W), were tested from 12 November 2015 to 16 November 2016 in outdoor flumes maintained at mean pCO2 levels of 364 µatm, 564 µatm, 761 µatm, and 1067 µatm. The communities consisted of four corals and two calcified algae, with change in mass (Gnet, a combination of gross accretion and dissolution) and percent cover recorded monthly. For massive Porites and Montipora spp., Gnet differed among treatments, and at 1067 µatm (relative to ambient) was reduced and still positive; for Porolithon onkodes, all of which died, Gnet was negative at high pCO2, revealing dissolution (sample sizes were too small for analysis of Gnet for other taxa). Growth rates (% cover month−1) were unaffected by pCO2 for Montipora spp., P. rus, Pocillopora verrucosa, and Lithophyllum kotschyanum, but were depressed for massive Porites at 564 µatm. Multivariate community structure changed among seasons, and the variation under all elevated pCO2 treatments differed from that recorded at 364 µatm, and was greatest under 564 µatm and 761 µatm pCO2. Temporal variation in multivariate community structure could not be attributed solely to the effects of OA on the chemical and physical properties of seawater. Together, these results suggest that coral reef community structure may be more resilient to OA than suggested by the negative effects of high pCO2 on Gnet of their component organisms.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Area; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Dry mass; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Group; Identification; Laboratory experiment; Lithophyllum kotschyanum; Macroalgae; massive Porites; Month; Montipora sp.; Moorea_coral; Number; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Plantae; Pocillopora verrucosa; Porites rus; Porolithon onkodes; Potentiometric; Potentiometric titration; Rhodophyta; Rocky-shore community; Salinity; Single species; South Pacific; Species; Temperature, water; Treatment: partial pressure of carbon dioxide; Tropical; Type of study; Year of sampling
    Type: Dataset
    Format: text/tab-separated-values, 48833 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-29
    Description: We created a 3D GNSS surface velocity field to estimate tectonic plate motion and test the effect of a set of 1D and 3D Glacial Isostatic Adjustment (GIA) models on tectonic plate motion estimates. The main motivation for creating a bespoke 3D velocity field is to include a larger number of GNSS sites in the GIA-affected areas of investigation, namely North America, Europe, and Antarctica. We created the GNSS surface velocity field using the daily network solutions submitted to the International GNSS Service (IGS) “repro2” data processing campaign, and other similarly processed GNSS solutions. We combined multiple epoch solutions into unique global epoch solutions of high stability. The GNSS solutions we used were processed with the latest available methods and models at the time: all the global and regional solutions adhere to IGS repro2 standards. Every network solution gives standard deviations of site position coordinates and the correlations between the network sites. We deconstrained and combined the global networks and aligned them to the most recent ITRF2014 reference frame on a daily level. Additionally, several regional network solutions were deconstrained and aligned to the unique global solutions. The process was performed using the Tanya reference frame combination software (Davies & Blewitt, 1997; doi:10.1029/2000JB900004) which we updated to facilitate changes in network combination method and ITRF realisation. This resulted in 57% reduction of the WRMS of the alignment post-fit residuals compared to the alignment to the previous ITRF2008 reference frame for an overlapping period. We estimated linear velocities from the time series of GNSS coordinates using the MIDAS trend estimator (Blewitt et al., 2016; doi:10.1002/2015JB012552). The sites selected through multiple steps of quality control constitute a final GNSS surface velocity field which we denote NCL20. This velocity field has horizontal uncertainties mostly within 0.5 mm/yr, and vertical uncertainties mostly within 1 mm/yr, which make it suitable for testing GIA models and estimating plate motion models.
    Keywords: 1LSU_GNSS; 1NSU_GNSS; 1ULM_GNSS; AB04_GNSS; AB08_GNSS; AB12_GNSS; AC58_GNSS; ACOR_GNSS; ACP1_GNSS; ACP6_GNSS; ACSO_GNSS; ACUM_GNSS; ADE1_GNSS; ADIS_GNSS; ADRI_GNSS; AJAC_GNSS; AL30_GNSS; AL40_GNSS; AL50_GNSS; AL60_GNSS; AL70_GNSS; AL90_GNSS; ALCI_GNSS; ALES_GNSS; ALGO_GNSS; ALIC_GNSS; ALRT_GNSS; AMC2_GNSS; ANDO_GNSS; ANG1_GNSS; ANP5_GNSS; ANTO_GNSS; AOML_GNSS; AOPR_GNSS; ARBT_GNSS; ARCM_GNSS; ARFY_GNSS; ARGI_GNSS; ARHP_GNSS; ARHR_GNSS; ARJM_GNSS; ARP3_GNSS; ARPG_GNSS; ARTU_GNSS; ASC1_GNSS; ASCG_GNSS; ASHV_GNSS; ASUB_GNSS; AUCK_GNSS; AUDR_GNSS; AUS5_GNSS; AUTN_GNSS; AVCA_GNSS; AXPV_GNSS; BACA_GNSS; BACK_GNSS; BACO_GNSS; BADH_GNSS; BAHR_GNSS; BAIA_GNSS; BAIE_GNSS; BAKE_GNSS; BAN2_GNSS; BARH_GNSS; BARN_GNSS; BAUS_GNSS; BAYR_GNSS; BBYS_GNSS; BCLN_GNSS; BELE_GNSS; BELF_GNSS; BELL_GNSS; BENN_GNSS; BET1_GNSS; BIAZ_GNSS; BIL5_GNSS; BISK_GNSS; BJCO_GNSS; BJU0_GNSS; BLA1_GNSS; BNDY_GNSS; BNFY_GNSS; BOD3_GNSS; BOGI_GNSS; BOMJ_GNSS; BOR1_GNSS; BORJ_GNSS; BORK_GNSS; BORR_GNSS; BPDL_GNSS; BRAZ_GNSS; BRFT_GNSS; BRGS_GNSS; BRIP_GNSS; BRMF_GNSS; BRMU_GNSS; BRST_GNSS; BRTW_GNSS; BRU5_GNSS; BRUS_GNSS; BSCN_GNSS; BSMK_GNSS; BUDP_GNSS; BUE1_GNSS; BUMS_GNSS; BURI_GNSS; BVHS_GNSS; BYDG_GNSS; CACE_GNSS; CAEN_GNSS; CAGL_GNSS; CAGS_GNSS; CALU_GNSS; CANT_GNSS; CAPF_GNSS; CARM_GNSS; CAS1_GNSS; CASB_GNSS; CASC_GNSS; CASP_GNSS; CAYU_GNSS; CBMD_GNSS; CBSB_GNSS; CCV5_GNSS; CEBR_GNSS; CEDU_GNSS; CEFE_GNSS; CFRM_GNSS; CGGN_GNSS; CHA1_GNSS; CHAN_GNSS; CHAT_GNSS; CHB5_GNSS; CHIZ_GNSS; CHL1_GNSS; CHPI_GNSS; CHR1_GNSS; CHT1_GNSS; CHTI_GNSS; CHUR_GNSS; CJTR_GNSS; CKIS_GNSS; CLIB_GNSS; CLK5_GNSS; CLRK_GNSS; CN13_GNSS; CN14_GNSS; CN15_GNSS; CN16_GNSS; CN23_GNSS; CN24_GNSS; CN28_GNSS; CN29_GNSS; CN33_GNSS; CN34_GNSS; CN35_GNSS; CN41_GNSS; CN46_GNSS; CN53_GNSS; CNC0_GNSS; CNIV_GNSS; CNMR_GNSS; COLA_GNSS; CONO_GNSS; CORB_GNSS; CORC_GNSS; COTE_GNSS; COVG_GNSS; COVX_GNSS; CPAR_GNSS; CRAK_GNSS; CRAO_GNSS; CRDI_GNSS; CRST_GNSS; CTAB_GNSS; CTBR_GNSS; CTGU_GNSS; CTPU_GNSS; CTWN_GNSS; CUIB_GNSS; CUSV_GNSS; CVMS_GNSS; DAKR_GNSS; DANE_GNSS; DARE_GNSS; DAVM_GNSS; DEAR_GNSS; DEFI_GNSS; DEGE_GNSS; DELM_GNSS; DENE_GNSS; DENT_GNSS; DEVI_GNSS; DGLS_GNSS; DNRC_GNSS; DOBS_GNSS; DOMS_GNSS; DOUR_GNSS; DREM_GNSS; DRV5_GNSS; DSL1_GNSS; DUBO_GNSS; DUM1_GNSS; DUPT_GNSS; EBRE_GNSS; ECSD_GNSS; EDOC_GNSS; EGLT_GNSS; EIJS_GNSS; ELEN_GNSS; ENG1_GNSS; ENIS_GNSS; ENTZ_GNSS; EPRT_GNSS; ESCO1_GNSS; ESCU_GNSS; EUR2_GNSS; EUSK_GNSS; EVPA_GNSS; EXU0_GNSS; FALL_GNSS; FFMJ_GNSS; FIE0_GNSS; FLIN_GNSS; FLIU_GNSS; FLM5_GNSS; FLRS_GNSS; FONP_GNSS; FOYL_GNSS; FREE_GNSS; FREI_GNSS; FRKN_GNSS; FTP4_GNSS; FUNC_GNSS; GAAT_GNSS; GABR_GNSS; GACC_GNSS; GACL_GNSS; GACR_GNSS; GAIA_GNSS; GAIT_GNSS; GAL1_GNSS; GANP_GNSS; GARF_GNSS; GAST_GNSS; GCEA_GNSS; GDMA_GNSS; Glacial Isostatic Adjustment (GIA) model; GLPM_GNSS; GLPS_GNSS; GLSV_GNSS; GMSD_GNSS; GNSS; GNSS Receiver; GNVL_GNSS; GODE_GNSS; GOGA_GNSS; GOPM_GNSS; GOUG_GNSS; GRAS_GNSS; GRE0_GNSS; GRIS_GNSS; GRN0_GNSS; GRTN_GNSS; GTK0_GNSS; GUAM_GNSS; GUAX_GNSS; GUIP_GNSS; GUUG_GNSS; GWWL_GNSS; HAAG_GNSS; HAC6_GNSS; HAG6_GNSS; HALY_GNSS; HAMM_GNSS; HAMP_GNSS; HARK_GNSS; HASM_GNSS; HBCH_GNSS; HBRK_GNSS; HCES_GNSS; HDIL_GNSS; HELG_GNSS; HERS_GNSS; HILB_GNSS; HILO_GNSS; HIPT_GNSS; HJOR_GNSS; HKLO_GNSS; HLFX_GNSS; HNLC_GNSS; HNPT_GNSS; HNUS_GNSS; HOB2_GNSS; HOBU_GNSS; HOE2_GNSS; HOLM_GNSS; HONS_GNSS; horizontal GIA; HOS0_GNSS; HOUM_GNSS; HOUS_GNSS; HOWE_GNSS; HOWN_GNSS; HRMM_GNSS; HRST_GNSS; HUGO_GNSS; HYDE_GNSS; IBIZ_GNSS; ICT1_GNSS; IGEO_GNSS; IGGY_GNSS; IISC_GNSS; ILDX_GNSS; ILHA_GNSS; ILSA_GNSS; ILUC_GNSS; IMBT_GNSS; IMPZ_GNSS; INAB_GNSS; INES1_GNSS; INGG_GNSS; INVM_GNSS; INWN_GNSS; IQAL_GNSS; IQUI_GNSS; IRBE_GNSS; IRKM_GNSS; ISCO_GNSS; ISPA_GNSS; IZAN_GNSS; JAB2_GNSS; JCT1_GNSS; JFNG_GNSS; JFWS_GNSS; JOEN_GNSS; JONM_GNSS; JOZE_GNSS; JXVL_GNSS; KAR0_GNSS; KARL_GNSS; KARR_GNSS; KAT1_GNSS; KAUS_GNSS; KELY_GNSS; KERM_GNSS; KEVO_GNSS; KEW5_GNSS; KHAJ_GNSS; KHAR_GNSS; KIRI_GNSS; KIRM_GNSS; KIRU_GNSS; KIVE_GNSS; KJUN_GNSS; KLOP_GNSS; KMOR_GNSS; KNGS_GNSS; KNS5_GNSS; KNTN_GNSS; KOK1_GNSS; KOKM_GNSS; KOSG_GNSS; KOUC_GNSS; KOUG_GNSS; KOUR_GNSS; KRA0_GNSS; KRSS_GNSS; KRTV_GNSS; KST5_GNSS; KSTU_GNSS; KSU1_GNSS; KULU_GNSS; KUN0_GNSS; KUNZ_GNSS; KURE_GNSS; KUUJ_GNSS; KUUS_GNSS; KUWT_GNSS; KVTX_GNSS; KWJ1_GNSS; KWST_GNSS; KYBO_GNSS; KYMH_GNSS; KYTB_GNSS; KYTC_GNSS; KYTD_GNSS; KYTE_GNSS; KYTG_GNSS; KYTH_GNSS; KYTK_GNSS; KYTL_GNSS; KYW1_GNSS; KZN2_GNSS; LAMA_GNSS; LAMT_GNSS; LANS_GNSS; LATITUDE; LCDT_GNSS; LCHS_GNSS; LCKM_GNSS; LCSB_GNSS; LEBA_GNSS; LEES_GNSS; LEIJ_GNSS; LEK0_GNSS; LEON_GNSS; LESV_GNSS; LHCL_GNSS; LHUE_GNSS; LIL2_GNSS; LKHU_GNSS; LLIV_GNSS; LMNO_GNSS; LODZ_GNSS; LOFS_GNSS; LONGITUDE; LOVM_GNSS; LPAL_GNSS; LPGS_GNSS; LPIL_GNSS; LPLY_GNSS; LROC_GNSS; LSBN_GNSS; LSUA_GNSS; LWN0_GNSS; LWX1_GNSS; LYCO_GNSS; LYNS_GNSS; LYRS_GNSS; MACC_GNSS; MADM_GNSS; MADO_GNSS; MAG0_GNSS; MAIR_GNSS; MAJU_GNSS; MALD_GNSS; MALL_GNSS; MAN2_GNSS; MAPA_GNSS; MAR6_GNSS; MARJ_GNSS; MARN_GNSS; MARS_GNSS; MAS1_GNSS; MAUI_GNSS; MAW1_GNSS; MAYZ_GNSS; MCAR_GNSS; MCD5_GNSS; MCIL_GNSS; MCM4_GNSS; MCN1_GNSS; MCNE_GNSS; MCTY_GNSS; MDOR_GNSS; MDR6_GNSS; MDVJ_GNSS; MET6_GNSS; MET7_GNSS; METG_GNSS; MFLD_GNSS; MIAR_GNSS; MICW_GNSS; MIDS_GNSS; MIGD_GNSS; MIHO_GNSS; MIHT_GNSS; MIIR_GNSS; MIKL_GNSS; MIL1_GNSS; MIMN_GNSS; MIMQ_GNSS; MIN0_GNSS; MINI_GNSS; MIPR_GNSS; MIST_GNSS; MKEA_GNSS; MLF1_GNSS; MLVL_GNSS; MNBD_GNSS; MNBE_GNSS; MNCA_GNSS; MNDN_GNSS; MNGR_GNSS; MNJC_GNSS; MNP1_GNSS; MNPL_GNSS; MNRM_GNSS; MNRT_GNSS; MNRV_GNSS; MNSC_GNSS; MNTF_GNSS; MNVI_GNSS; MOAL_GNSS; MOB1_GNSS; MOBS_GNSS; MOED_GNSS; MOEL_GNSS; MOGF_GNSS; MOPN_GNSS; MORP_GNSS; MOVB_GNSS; MPLA_GNSS; MPLE_GNSS; MRO1_GNSS; MRRN_GNSS; MSB5_GNSS; MSHT_GNSS; MSKU_GNSS; MSNA_GNSS; MSPK_GNSS; MSSC_GNSS; MSYZ_GNSS; MTMS_GNSS; MTNT_GNSS; MTY2_GNSS; NAIN_GNSS; NAMA_GNSS; NAPL_GNSS; NAS0_GNSS; NAUR_GNSS; NAUS_GNSS; NBR6_GNSS; NCDU_GNSS; NCGO_GNSS; NCJA_GNSS; NCPO_GNSS; NCSW_GNSS; NCWH_GNSS; NCWI_GNSS; NDMB_GNSS; NEDR_GNSS; NEGI_GNSS; NEIA_GNSS; NESC_GNSS; NEWL_GNSS; NHUN_GNSS; NIST_GNSS; NIUM_GNSS; NJCM_GNSS; NJHC_GNSS; NJI2_GNSS; NJOC_GNSS; NJTW_GNSS; NKLG_GNSS; NLIB_GNSS; NMKM_GNSS; NNOR_GNSS; NOR0_GNSS; NOR1_GNSS; NOR3_GNSS; NOUM_GNSS; NPLD_GNSS; NPRI_GNSS; NRCM_GNSS; NRIL_GNSS; NRL1_GNSS; NRMD_GNSS; NTUS_GNSS; NYBH_GNSS; NYBT_GNSS; NYCL_GNSS; NYCP_GNSS; NYDV_GNSS; NYFD_GNSS; NYFS_GNSS; NYFV_GNSS; NYHC_GNSS; NYHM_GNSS; NYHS_GNSS; NYIR_GNSS; NYLV_GNSS; NYMD_GNSS; NYML_GNSS; NYNS_GNSS; NYON_GNSS; NYPD_GNSS; NYPF_GNSS; NYRB_GNSS; NYST_GNSS; NYWL_GNSS; NYWT_GNSS; OAKH_GNSS; ODS5_GNSS; OHAS_GNSS; OHFA_GNSS; OHHU_GNSS; OHLI_GNSS; OHMO_GNSS; OHMR_GNSS; OHPR_GNSS; OKAN_GNSS; OKAR_GNSS; OKBF_GNSS; OKCB_GNSS; OKCL_GNSS; OKDT_GNSS; OKGM_GNSS; OKHV_GNSS; OKMA_GNSS; OKOM_GNSS; OLKI_GNSS; OMH5_GNSS; ONSM_GNSS; OPMT_GNSS; ORMD_GNSS; OSKM_GNSS; OSLS_GNSS; OSPA_GNSS; OST0_GNSS; OUAG_GNSS; OULU_GNSS; OVE0_GNSS; P032_GNSS; P033_GNSS; P037_GNSS; P038_GNSS; P039_GNSS; P040_GNSS; P042_GNSS; P043_GNSS; P044_GNSS; P049_GNSS; P050_GNSS; P051_GNSS; P052_GNSS; P053_GNSS; P054_GNSS; P055_GNSS; P070_GNSS; P728_GNSS; P775_GNSS; P776_GNSS; P777_GNSS; P778_GNSS; P779_GNSS; P780_GNSS; P802_GNSS; P803_GNSS; P807_GNSS; P817_GNSS; PAAP_GNSS; PAFU_GNSS; PALK_GNSS; PAMS_GNSS; PAPC_GNSS; PARK_GNSS; PARY_GNSS; PASA_GNSS; PASS_GNSS; PATN_GNSS; PATT_GNSS; PBCH_GNSS; PBRM_GNSS; PECE_GNSS; PICL_GNSS; PIGT_GNSS; PIRT_GNSS; PKTN_GNSS; plate motion model; PLTC_GNSS; PNBM_GNSS; PNGM_GNSS; PNR6_GNSS; POAL_GNSS; POHN_GNSS; POLV_GNSS; POR2_GNSS; POTS_GNSS; POUS_GNSS; POVE_GNSS; PRCO_GNSS; PRDS_GNSS; PREI_GNSS; PREM_GNSS; PRPT_GNSS; PSU1_GNSS; PTBB_GNSS; PTGV_GNSS; PTIR_GNSS; PUB5_GNSS; PUIN_GNSS; PULK_GNSS; PUO1_GNSS; PUYV_GNSS; PWEL_GNSS; QAQ1_GNSS; QIKI_GNSS; RAMG_GNSS; RAMO_GNSS; RANT_GNSS; RAT0_GNSS; RBAY_GNSS; RCMV_GNSS; RECF_GNSS; REDU_GNSS; REDZ_GNSS; Reference frame; RESO_GNSS; REUN_GNSS; RG13_GNSS; RG15_GNSS; RG16_GNSS; RG17_GNSS; RG18_GNSS; RG19_GNSS; RG23_GNSS; RG24_GNSS; RIC1_GNSS; RIGA_GNSS; RIO1_GNSS; RIOJ_GNSS; RIS5_GNSS; RLAP_GNSS; RMBO_GNSS; ROB4_GNSS; ROBN_GNSS; ROMU_GNSS; ROSS_GNSS; ROTH_GNSS; RWSN_GNSS;
    Type: Dataset
    Format: text/tab-separated-values, 6755 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-02
    Description: We describe year-long experiments in which back reef and fore reef (17-m depth) communities from Moorea, French Polynesia, were incubated outdoors under pCO2 regimes reflecting endpoints of representative concentration pathways (RCPs) expected by the end the century. Incubations were completed in 3–4 flumes (5.0 × 0.3 m, 500 L) in which seawater was refreshed and circulated at 0.1 m s-1, and the response of the communities was evaluated monthly by measurements of net community calcification (NCC) and net community photosynthesis (NCP).
    Keywords: Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Coverage; Date; Day of experiment; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Irradiance; Laboratory experiment; Local Time; Moorea_coral; Net calcification rate of calcium carbonate; Net photosynthesis rate; Net photosynthesis rate, oxygen; Number; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Period; pH; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Rocky-shore community; Salinity; South Pacific; Temperature, water; Time in hours; Treatment: partial pressure of carbon dioxide; Tropical; Type of community; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 28438 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...