ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (1)
  • 1970-1974  (26)
  • 1965-1969  (5)
  • 1910-1914  (20)
  • 1880-1889
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' Zeitschrift für analytische Chemie 51 (1912), S. 322-323 
    ISSN: 1618-2650
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1912-05-01
    Print ISSN: 1618-2642
    Electronic ISSN: 1618-2650
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 16 (1973), S. 1340-1346 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Experiments with Prunus armeniaca were carried out under conditions of constant temperature but varying air humidity. Experiments were also contucted with a constant water vapor difference between the evaporating sites in a leaf and the air, but with varying leaf temperature. These served as a basis for predicting the daily course of total diffusion resistance under the natural climatic conditions of a desert. For the simulation, the rsults of the experiments at constant conditions with only one variable factor are fitted with empirical equations which serve as “calibration curves” to predict the change in diffusion resistance caused by a change in humidity and temperature calculated from the meteorological data of a desert day. The simulation shows that for P. armeniaca humidity and temperature are the dominating factors in controlling the daily course of diffusion resistance. For meteorologically very different days the simulation allows the increase in diffusion resistance in the morning to be predicted with an accuracy of 90%–105% as compared to directly observed measurements. In the afternoon, especially after extreme climatic conditions during the morning, the deviation between predicted and observed values of diffusion resistance may be greater, but not more than -20% to -30%. This possibly indicates the existence of an additional factor of significance which was not included in the simulation. The two peaked curves of net photosynthesis and transpiration characteristic of plants living under arid conditions can be explained in this species by the humidity-and temperature-controlled stomatal response. This stomatal regulation leads to a decreasing total daily transpirational water loss on a dry day as compared to a moist one. The significance of this controlling mechanism for the primary production and the water relations of P. armeniaca is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary During the dry season in the Negev desert (Israel) Artemisia herbaalba in its natural habitat has a very low water content. It shows values of negative hydrostatic pressure in the xylem down to -163 bars and an extreme of osmotic potential in the leaves of -92 bars. The diurnal water stress does not decrease strongly in the night. Under these conditions Artemisia is still photosynthetically active for a few hours of the day during the whole dry period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A digital registration system used with temperature- and humidity-controlled cuvettes for net photosynthesis and transpiration measurements in the field is described. The associated errors of the measured parameters and calculated data are estimated. The digitalization is based on an analogue registration which is of primary importance in the control of experimental conditions in the cuvettes. The digital system is connected to the analogue registration in series. The error associated with digitalization is 0.1% across 70% of the scale. This error increases to 0.2% between 3 and 30% on the scale due to a minor lack of linearity. The reproducibility of the digitalization is ±0.024%. The error associated with data transfer in the digitalization and the errors of the analogue registration are estimated for temperature and humidity measurements (error of air and leaf temperature is ±0.1° C; error of the dew point temperature is ±1.1° C dew point). The effect of these errors on the calculation of relative humidity and the water vapour difference between the leaf and the air is determined using the progressive error law. At 30° C and 50% relative humidity, the error in relative humidity is ±7.4%, the error for the water vapour difference is ±6.6%. The dependence of these errors on temperature and humidity is shown. The instrument error of the net photosynthesis measurement is calculated to be ±4.2%. Transpiration measurements have an average inaccuracy of ±8.3%. The total diffusion resistance which is calculated from values of transpiration and the water vapour difference has an average error of ±10.9%. The sizeable influence of errors in humidity and temperature measurements on the calculated diffusion resistance is demonstrated. The additional influence of biological errors associated with field measurements is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Temperature dependence of net photosynthesis under conditions of light saturation and maximum air humidity was measured throughout the season in the Central Negev Desert (Israel). Experimental plants were the wild growing Hammada scoparia and Prunus armeniaca cultivated in the runoff farm of Avdat. The optimum temperature for net photosynthesis and the upper temperature compensation point of CO2 exchange showed a characteristic seasonal variation with low values in spring and fall and high values in mid-summer. This shift was exhibited by plants growing under conditions of normal soil-water stress as well as by irrigated plants. There was no general correlation between the changes in temperature dependence of net photosynthesis of the plants, their maximum photosynthetic capacity under the experimental conditions, their daily photosynthesis maximum under natural conditions, and their rate of dark respiration. The seasonal shift of the photosynthetic response to temperature cannot be explained by changes in the temperature sensitivity of the stomata. It may be caused by seasonal changes of biochemical and/or biophysical properties. A number of observations made on other wild plants also showed, in all cases, seasonal shifts of the upper temperature compensation point, with an amplitude of 6.0°C–13.7°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 10 (1972), S. 243-251 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A temperature- and humidity-controlled plant chamber for CO2 and H2O exchange measurements in the field is described in which the heat exchanger assembly and humidity controlling water vapour trap are separated from the plant cuvette. The shape and construction material of the plant cuvette can vary according to the demands of the experimental conditions and the size and growth form of the plant. The natural illumination field is only slightly altered in this plant cuvette. In the chamber, the temperature and humidity conditions can either be held constant throughout a wide range of conditions or can be programmed to track ambient condition. In this manner, not only temperature and absolute humidity are replicated, but it is also possible to reproduce the natural conditions of water vapour gradient between the evaporating surfaces in the mesophyll and the atmosphere, the relative humidity of the air, and the temperature difference between the leaf and the ambient air. Thus, the chamber appears to be an appropriate instrument to investigate with sufficient accuracy the reactions of individual plants in cultivation or in natural communities under field conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Planta 100 (1971), S. 76-86 
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Large areas of the lower epidermis of full-grown leaves of Polypodium vulgare (and Valerianella locusta) are normally separated from the mesophyll by an extensive subepidermal airspace. Epidermal stripes were prepared for experiments to simulate these conditions in order to investigate stomatal reactions. They were placed with their inner surface in contact with an airspace of uniformly high humidity. The outer surface was treated with air of varying degrees of humidity. The stomatal reactions were observed by microscope and the opening of the guard cells determined photographically. Treatment of the outer side of the epidermis with dry air led to a rapid closing of the stomata, whilst moist air caused opening. This induction of opening and closing movements could be repeated up to 15 times with the same stoma by changing the degree of humidity. Neighbouring groups of stomata showed different apertures according to their individual humidity conditions. The degree of aperture of the stomata depended on the water potential of the ambient air and also on the humidity conditions in the subepidermal airspace. The cause of this stomatal behaviour could lie in the “peristomatal transpiration”. In this way, the guard cells are able to function as “humidity sensors” which “measure” the difference in water potential inside and outside the leaf. Their aperture thus is controlled by their individual transpiration conditions. This controlling mechanism could be very important for the water economy of plants. They would appear to be able to reduce their transpiration through an increase in diffusion resistance of the stomata during decreasing humidity in the ambient air, without changing the water status of the whole leaf.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 8 (1971), S. 296-309 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Carbon dioxide exchange and transpiration measurements of various wild and cultivated plants were carried out during the dry summer period in 1967 in the Central Negev Desert (Israel). A mobile laboratory used for these investigations is described. Measurements were carried out with conditioned plant chambers which followed either the ambient temperature and humidity or else allowed the experiments to be carried out under constant conditions. The accuracy of the measurements was estimated. The mean error of the determination of the CO2 exchange rate amounts to ±0.07 mg CO2·g-1·h-1. Transpiration rate is measured with an error of ±0.15 g H2O·g-1·h-1. The response time of the instrumentation to reach 90% equilibrium after a change in photosynthesis or transpiration is 7 to 9 minutes. Errors which are caused by changes of quality of incident radiant energy and altered turbulence conditions for the leaves enclosed in the chamber, are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...