ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (89)
  • Physical Chemistry  (89)
  • 2020-2024
  • 1975-1979  (57)
  • 1970-1974  (32)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 6 (1974), S. 829-848 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The chemical reactions of SO2(3B1) molecules with cis- and trans-2-butene have been studied in gaseous mixtures at 25°C by excitation of SO2 within the SO2(3B1) → SO2(+, 1A1) ‘forbidden’ band using 3500-4100-Å light. The initial quatum yields of olefin isomerization were determined as a function of the [SO2]/[2-butene] ratio and added gases, He and O2. The kinetic treatment of these data suggests that there is formed in the SO2(3B1) quenching step with either cis- or trans-2-butene, some common intermediate, probably a triplet addition complex between SO- and olefin. It decomposes very rapidly to form the 2-butene isomers in the ratio [trans-2-butene]/[cis-2-butene] = 1.8. In another series of experiments SO2 was excited using a 3630 ± 1-Å laser pulse of short duration, and the SO2(3B1) quenching rate constants with the 2-butenes were determined from the SO2(3B1) lifetime measurements. The rate constants at 21°C are (1.29 ± 0.18) × 1011 and (1.22 ± 0.15) × 1011 l/mole·sec with cis-2-butene and trans-2-butene, respectively, as the quencher molecule. Within the experimental error these quenching constants equal those derived from the quantum yield data. Thus the rate-determining step in the isomerization reaction is suggested to be the quenching reaction, presumably the formation of the triplet SO2-2-butene addition complex. In a third series of experiments using light scattering measurements, it was found that the aerosol formation probably originates largely from SO3 and H2SO4 mist formed following the reaction SO2(3B1) + SO2 → SO3 + SO(3Σ-). Aerosol formation from photochemically excited SO2-olefin interaction is probably unimportant in these systems and must be unimportant in the atmosphere.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 7 (1975), S. 547-555 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The decomposition rate of chemically activated ethyltrimethylgermane from the reaction 1CH2 + (CH3)4Ge, where 1CH2 was produced from diazomethane photolysis at 3660 Å, is 8.6 × 105 sec-1. This result combined with RRKM theory and critical energy estimates yields an Arrhenius A factor of log[A (sec-1)/methyl] = 14.7 ± 0.8 for methyl rupture from germanium.Log A values for methyl rupture from carbon, silicon, and germanium linearly correlate with the vibrational-rotational entropies of the corresponding tetramethyls. Extrapolation predicts log[A (sec-1)/methyl] = 14.4 and 14.3 for methyl rupture from tin and lead, respectively.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 3 (1971), S. 89-96 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Long-chain chlorine-photosensitized oxidation has been observed in the gas phase at about 355°K for 1,1,2,2- and 1,1,1,2-C2H2Cl4, C2HCl5, and C2Cl4 but not for C2H6, 1,2-C2H4Cl2, 1,1,1-C2H3Cl3, C2H4, and 1,2-C2H2Cl2. This is shown to depend on the exothermicity of the dissociation of the chloroethoxy radicals which must be involved in each reaction system.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The ion-molecule reactions of CH3NH2+, (CH3)2NH+, and (CH3)3N+ with the respective amines have been investigated at thermal kinetic energies in a high-pressure photoionization mass spectrometer at several wavelengths (energies) in the vacuum ultraviolet. The absolute rate coefficient for proton transfer from (CH3)3N+ to (CH3)3N decreases from 8.2 × 10-10 cm3/molecule · sec at 147.0 nm (8.4 eV) to 4.9 × 10-10 cm3/molecule. sec at 106.7-104.8 nm (11.7 eV). In dimethylamine, the rate coefficient decreases from 11.6 × 10-10 cm3/molecular. sec at 8 4 eV to 10.2 × 10-10 cm3/molecule osec at 11.7 eV, while no significant effect of energy was detected in methylamine. The reactions of several fragment ions are also reported. Experiments were also carried out at pressures up to 0.5 torr in order to investigate the further solvation of CH3NH2+, (CH3)2NH2+, and (CH3)3NH+. It was found that the maximum proton solvation numbers in methyl-, dimethyl-, and trimethyl-amine are 4, 3, and 2, respectively, under these conditions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A detailed mechanism is presented for reactions occurring during irradiation of part-per-million concentrations of propene and/or n-butane and oxides of nitrogen in air. Data from an extensive series of well-characterized smog chamber experiments carried out in our 5800-liter evacuable chamber-solar simulator facility designed for providing data suitable for quantitative model validation were used to elucidate several unknown or uncertain kinetic parameters and details of the reaction mechanism.The mechanism was then tested against the data base from the smog chamber runs. In general, most calculated concentration-time profiles agreed with experiments to within the experimental uncertainties. Fits were usually attained to within ∼±20% or better for ozone, NO, propene, and n-butane, to within ∼±30% or better for NO2, PAN, methyl ethyl ketone, 2-butyl nitrate, butyraldehyde, and (in runs not containing propene) methyl nitrate, to within ⋐±50% or better for the minor products 1-butyl nitrate and propene oxide, and to within a factor of 2 for methyl nitrate in propene-containing runs. Propionaldehyde was consistently underpredicted in all runs; it is probably a chamber contaminant. For formaldehyde and acetaldehyde, the major products in both systems, fits to within ⋐±20% were often obtained, yet for a number of experiments, significantly greater discrepancies were observed, probably as a result of experimental and/or analytical problems.The good fits to experimental data were attained only after adjusting several rate constants or rate constant ratios related to uncertainties concerning chamber effects or the chemical mechanism. The largest uncertainty concerns the necessity to include in the mechanism a significant rate of radical input from unknown sources in the smog chamber. Other areas where fundamental kinetic and mechanistic data are most needed before a predictive, detailed propene + n-butane-NOx-air smog model can be completely validated concern other chamber effects, the O3 + propene mechanism, decomposition rates of substituted alkoxy radicals, primary quantum yields for radical production as a function of wavelength for aldehyde and ketone photolyses, and the mechanisms and rates of reactions of peroxy radicals with NO and NO2.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The total decomposition rates of the chemically activated alkanes n-butane, n-pentane, isopentane, and neohexane were measured using an internal comparison technique. Chemical activation was by the C—H insertion reaction of excited singlet-state methylene radicals. A total of ten rate constants ranging from 4.6 × 105 to 2.3 × 107 sec-1 were measured for these alkanes at different excitation energies. These rates correlate via RRKM theory calculations with thermal A-factors in the range of 1016.1 to 1017.1 sec-1 for free rotoractivated complex models and in the range of 1016.4 to 1017.8 sec-1 for vibrator-activated complex models. It was found that high critical energies for decomposition, “tight” radical models, and activated complex models with free internal rotations were required to correlate the decomposition rates of these alkanes with estimated alkyl radical recombination rates. The correlation is just barely possible even for these favorable extremes, indicating that there may be a basic discrepancy between the recombination rate and decomposition rate data for alkanes.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 6 (1974), S. 899-920 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Singlet methylene was reacted with cyclopentadiene to give chemically activated bicyclo[3.1.0]hex-2-ene (BCH). The rate of isomerization of BCH to 1,4-cyclohexadiene, 1,3-cyclohexadiene, cis-1,3,5-hexatriene, and l-methylcyclopentadiene is compared with calculated rate constants using the RRKM theory and measured or estimated thermal Arrhenius parameters. Subsequent isomerizations of the C6H8 products are also measured and calculated. These include 1,4-cyclohexadiene to benzene and the reversible reactions between 1,3-cyclohexadiene, cis-1,3,5-hexatriene, and trans-1,3,5-hexatriene. The results provide new data for several of these reactions which have not been observed in thermal studies. Agreement between the observed and calculated rates using the strong collision assumption is satisfactory except for the trans-1,3,5-hexatriene to cis-1,3,5-hexatriene reaction.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 7 (1975), S. 479-507 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The mechanisms of the pyrolyses of the n-alkanes C3H8, n-C4H10, and n-C5H12 at temperatures between 390 and 560°C have been studied by the construction and evaluation of sets of several hundred reactions. Rate parameter values were assigned using literature data and calculated estimates. Time-dependent numerical solutions were computed for the experimental conditions of several rate and product studies reported in the literature. The comparisons of these a priori computations with experiment show excellent agreement for propane and agreement for butane and pentane within the estimated error limits of the assigned rate parameters. These results demonstrate that the general “state of knowledge” of the mechanism of alkane pyrolysis, namely, the reactions and their rate parameters, is such that reasonable a priori predictions of experimental results can be made. Discussions of the major stepwise processes in the pyrolyses are presented, and the importance of allyl radicals in termination is demonstrated.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate of the isotope exchange reaction between iron(II) and iron(III) perchlorates has been measured in a solvent mixture containing a 3:2 mole ratio of water to dimethyl sulfoxide over the temperature range from 25° to -98°C. In this temperature range, the reactants can diffuse together faster than they can undergo isotope exchange. The activation enthalpy and entropy for the acid-independent reaction were 6.0 ± 1.2 kcal/mole and -38 ± 17 cal/deg mole, respectively. Below -22°C, the acid-dependent exchange reaction did not contribute significantly to the exchange. In liquid media at -112° and -117°C and in a solid glass at -136°C, no isotope exchange was observed over the period of a calculated half-life for the reaction. At these temperatures, the rate at which the reactants diffuse together is slower than the calculated rate of isotope exchange. In a solid glass at -196°C, no isotope exchange was observed over the period of one week.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 8 (1976), S. 45-58 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate constant for tert-butyl radical recombination has been measured near 700°K by the very-low-pressure pyrolysis (VLPP) technique and was found to be 108.8±0.3 M-1·sec-1 with neglibible temperature dependence. The thermochemical parameters for tert—butyl radicals were varied within reasonable limits to bring into agreement the data for the decomposition of 2,2,3,3-tetramethyl butane and the recombination of tert-butyl radicals. The revised thermochemistry also makes the gas-phase results and liquid-phase results compatible.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...