ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Compatible solutes  (1)
  • Diptera  (1)
  • 2020-2024
  • 1985-1989  (2)
Collection
Publisher
Years
  • 2020-2024
  • 1985-1989  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 89 (1985), S. 83-94 
    ISSN: 1573-5036
    Keywords: Compatible solutes ; Environmental stresses ; Polyethylene glycol ; Proline ; Proteins and enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The ability of the compatible solute, proline, to affect the behavior of proteins has been examined in many different systems by many researches. In the present study of protein solvation, proline has been shown to prevent or diminish, in a concentration-dependent manner, the glutamine synthetase-precipitating ability of polyethylene glycol (PEG). The effects of PEG concentration and molecular weight are reduced by proline, and the interaction is strongly affected by pH. PEG causes precipitation of many proteins, and the ability of proline to reduce the precipitation of two non-enzymatic conjugated proteins, alfalfa mosaic virus and an3H-testosterone/antiserum complex, was also examined. Proline was effective in reducing the PEG-induced precipitation of both proteins. Virus precipitation by PEG and its alleviation by proline are influenced by pH. The increased virus-precipitating effect of PEG in the presence of salt (NaCl) is also alleviated by proline. The precipitation of the radioimmune complex by PEG is diminished by proline and by a mixture of free amino acids. These results indicate the generality of the three-way interaction between proline, protein and PEG. They may be of importance for extraction of proteins from biological systems and in studies of enzyme inactivation or protein denaturation in a cytoplasmic milieu. The results suggest that the protective effects of some amino acids are at least additive and are consistent with the conclusion that the compatible solutes protect protein-containing systems against the unfavorable consequences of dehydration and other stresses, by increasing the tendency of the system to maintain thestatus quo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: CarrotDaucus carota ; Psila rosae ; Diptera ; Psilidae ; carrot-fly larva ; root chemicals ; carbonyl-rich fraction ; falcarinol ; falcarindiol ; fal-carindiol monoacetate ; electrophysiology ; neurotoxin ; carrot resistance factor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Roots of the carrot cultivars Vertou L.D. (resistant) and Long Chantenay (susceptible) were subjected to detailed chemical analysis to identify extracts and compounds influencing larval host-finding (preference/non-preference) behavior and to compare concentrations of these compounds in resistant and susceptible cultivars. Vertou yielded threefold less volatile material in headspace extracts of pureed roots. Extracts of chopped root in methanol, steam, hexane, and chloroform were inactive in behavioral assays. However, ether extracts were active and their hydrocarbon and carbonyl-rich fractions contained potent attractants. The principal constituent of the carbonyl-rich fraction of each cultivar was the carotatoxin complex comprising the neurotoxin falcarinol (carotatoxin), falcarindiol, and falcarindiol monoacetate, the latter compound here reported for the first time from carrot. Falcarinol (50 and 100 μg) was active in a behavioral assay, and all three ingredients of the complex were potent electrophysiological stimuli, eliciting maximum single unit responses to source concentrations of 10 ng. Furthermore, the complex was more abundant by about 1000 μg/root in Long Chantenay. As this comprised extra amounts of 70, 862, and 110 μg of falcarinol, falcarindiol, and falcarindiol monoacetate, respectively, the observed differences seem both behaviorally and physiologically relevant. It is generally accepted that coevolution has transformed the role of many toxins into host-location cues, but this seems a relatively rare example of a neurotoxin (falcarinol) evincing, in decreased concentrations, nonpreference host resistance. This evolved response to a toxin present in large concentrations is contrasted with that totrans-2-nonenal, which paralyses and kills the larva and is present in only trace amounts in the root.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...