ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • Springer  (12)
  • International Union of Crystallography (IUCr)
  • Oxford University Press
  • Periodicals Archive Online (PAO)
  • Wiley-Blackwell
  • 2020-2024  (12)
  • 1985-1989
  • 1
    Publication Date: 2024-01-08
    Description: The Clarion Clipperton Fracture Zone (CCZ) is a vast deep-sea region harboring a highly diverse benthic fauna, which will be affected by potential future deep-sea mining of metal-rich polymetallic nodules. Despite the need for conservation plans and monitoring strategies in this context, the majority of taxonomic groups remain scientifically undescribed. However, molecular rapid assessment methods such as DNA barcoding and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) provide the potential to accelerate specimen identification and biodiversity assessment significantly in the deep-sea areas. In this study, we successfully applied both methods to investigate the diversity of meiobenthic copepods in the eastern CCZ, including the first application of MALDI-TOF MS for the identification of these deep-sea organisms. Comparing several different species delimitation tools for both datasets, we found that biodiversity values were very similar, with Pielou’s evenness varying between 0.97 and 0.99 in all datasets. Still, direct comparisons of species clusters revealed differences between all techniques and methods, which are likely caused by the high number of rare species being represented by only one specimen, despite our extensive dataset of more than 2000 specimens. Hence, we regard our study as a first approach toward setting up a reference library for mass spectrometry data of the CCZ in combination with DNA barcodes. We conclude that proteome fingerprinting, as well as the more established DNA barcoding, can be seen as a valuable tool for rapid biodiversity assessments in the future, even when no reference information is available.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-08
    Description: Deep-sea decapod crustaceans (Crustacea: Decapoda) collected during nine research cruises to the Clarion-Clipperton Zone (CCZ) in the NE Pacific Ocean and the Peru Basin in the SE Pacific Ocean were studied comprehensively using an integrative taxonomic approach. The abyssal seafloors of both areas are rich in economically interesting polymetallic nodules. All specimens were morphologically identified and genetically analysed using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI). Eight species were collected, comprising three anomurans, three carideans, one dendrobranchiate, and one brachyuran, from water depths ranging between 4089 and 4511 m. COI sequences for representatives of the genera Parapagurus Smith, 1879, Ethusina SI Smith, 1884, and Bathystylodactylus Hanamura & Takeda, 1996 are provided for the first time. The molecular barcodes of the species provided herein will be valuable for the full taxonomic assignment of sequences produced in future metabarcoding and eDNA monitoring work. The new records extend the geographical distributional ranges or fill geographical gaps of the species reported, although none of the species is endemic to polymetallic nodule areas. This study is part of a taxonomic series aiming to describe the biodiversity of areas targeted for future deep-sea mining.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-01
    Description: Anthropogenic disturbances, including non-indigenous species (NIS) and climate change, have considerably affected ecosystems and socio-economies globally. Despite the widely acknowledged individual roles of NIS and global warming in biodiversity change, predicting the connection between the two still remains a fundamental challenge and requires urgent attention due to a timely importance for proper conservation management. To improve our understanding of the interaction between climate change and NIS on biological communities, we conducted laboratory experiments to test the temperature and pCO2 tolerance of four gammarid species: two native Baltic Sea species (Gammarus locusta and G. salinus), one Ponto‐Caspian NIS (Pontogammarus maeoticus) and one North American NIS (Gammarus tigrinus). Our results demonstrated that an increase in pCO2 level was not a significant driver of mortality, neither by itself nor in combination with increased temperature, for any of the tested species. However, temperature was significant, and differentially affected the tested species. The most sensitive was the native G. locusta which experienced 100% mortality at 24 °C. The second native species, G. salinus, performed better than G. locusta, but was still significantly more sensitive to temperature increase than either of the NIS. In contrast, NIS performed better than native species with warming, whereby particularly the Ponto-Caspian P. maeoticus did not demonstrate any difference in its performance between the temperature treatments. With the predicted environmental changes in the Baltic Sea, we may expect shifts in distributions of native taxa towards colder areas, while their niches might be filled by NIS, particularly those from the Ponto-Caspian region. Although, northern colder areas may be constrained by lower salinity. Additional studies are needed to confirm our findings across other NIS, habitats and regions to make more general inferences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Human activities are changing the Arctic environment at an unprecedented rate resulting in rapid warming, freshening, sea ice retreat and ocean acidification of the Arctic Ocean. Trace gases such as nitrous oxide (N2O) and methane (CH4) play important roles in both the atmospheric reactivity and radiative budget of the Arctic and thus have a high potential to influence the region's climate. However, little is known about how these rapid physical and chemical changes will impact the emissions of major climate-relevant trace gases from the Arctic Ocean. The combined consequences of these stressors present a complex combination of environmental changes which might impact on trace gas production and their subsequent release to the Arctic atmosphere. Here we present our current understanding of nitrous oxide and methane cycling in the Arctic Ocean and its relevance for regional and global atmosphere and climate and offer our thoughts on how this might change over coming decades.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The Clarion Clipperton Fracture Zone (CCZ) is an abyssal region in the north-east Pacific that is currently being explored for metal-rich polymetallic nodules, but also harbors a highly diverse megabenthic community. This community is influenced by multiple environmental gradients including bathymetric structures as well as differences in habitat and food availability. This study focuses on the benthic megafauna investigated in an exploration area positioned in the very east of the CCZ, which exhibits the lowest water depths (mean: 4200 m) and the highest flux of particulate organic carbon (POC) of the CCZ. Case studies using seafloor images for the detection of megafauna have revealed differences between seamounts and abyssal hills compared to nodule fields, as well as differences in the community composition between areas with and without nodule coverage and rock outcrop. Extrapolations suggest a richness of more than 300 morphotypes in the study area, including multiple invertebrate groups such as corals, sponges, echinoderms, and crustaceans as well as fish. Focusing on sampled specimens, diversities of Ophiuroidea, Porifera, and Bryozoa are high and more species are likely to be discovered in the study area. This also applies for the taxon Ophiuroidea, which is among the taxa investigated in the greatest detail so far. In the context of deep-sea mining, megafauna has been in the focus of a variety of environmental studies including baseline analyses, disturbance experiments, and/or testing of mining components or systems. These studies identify and address key factors responsible for the observed natural and impacted distribution patterns and thereby help to constrain expected anthropogenic impacts to the deep-sea environment in the context of deep-sea mining. Specifically in the area of focus of this study, 10 years of megafauna analyses have shown that the biodiversity in the selected preservation reference zone (PRZ) is not as similar to that of the impact reference zone (IRZ) as originally hypothesized based mainly on geological parameters. We suggest that recent area-wide habitat classifications and faunal mapping exercises (e.g., Uhlenkott et al. 2020, 2022) are used to designate a new PRZ that is more similar to the IRZ to meet its purpose, but that the current PRZ is maintained for scientific and conservation purposes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Dimethyl sulphide (DMS) and carbon monoxide (CO) are climate-relevant trace gases that play key roles in the radiative budget of the Arctic atmosphere. Under global warming, Arctic sea ice retreats at an unprecedented rate, altering light penetration and biological communities, and potentially affect DMS and CO cycling in the Arctic Ocean. This could have socio-economic implications in and beyond the Arctic region. However, little is known about CO production pathways and emissions in this region and the future development of DMS and CO cycling. Here we summarize the current understanding and assess potential future changes of DMS and CO cycling in relation to changes in sea ice coverage, light penetration, bacterial and microalgal communities, pH and physical properties. We suggest that production of DMS and CO might increase with ice melting, increasing light availability and shifting phytoplankton community. Among others, policy measures should facilitate large-scale process studies, coordinated long term observations and modelling efforts to improve our current understanding of the cycling and emissions of DMS and CO in the Arctic Ocean and of global consequences.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The extensive use of silver nanoparticles (AgNPs) in consumer products, medicine, and industry leads to their release into the environment. Thus, a characterization of the concentration, size, fate, and toxicity of AgNPs under environmental conditions is required. In this study, we present the characterization and optimization of an asymmetric flow field-flow fractionation (AF4) system coupled with UV/Vis spectrophotometer and dynamic light scattering (DLS) detector as a powerful tool for the size separation and multi-parameter characterization of AgNPs in complex matrices. The hyphenated AF4-UV/Vis-DLS system was first characterized using individual injections of the different size fractions. We used electrostatically stabilized AgNPs of 20-, 50-, and 80-nm nominal diameters coated with lipoic acid. We investigated the effect of applied cross-flows, carrier solutions, focus times, and quantity of injected particles on the nature of the AF4 fractograms and on the integrity of the AgNPs. Best size separation of a 1:1 mixture of 20- and 80-nm AgNPs was achieved using cross-flows of 0.5 and 0.7 mL/min with 1 mM NaCl and 0.05% v/v Mucasol as carrier solutions. We also researched the behavior of AgNPs in natural waters using the hyphenated AF4-UV/Vis-DLS system, under determined optimal conditions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The Clarion Clipperton Fracture Zone (CCZ) in the northeast Pacific is a heterogeneous deep-sea environment, featuring abyssal plains as well as multiple seamounts and abyssal hills (bathymetric elevations) that harbour a highly diverse megabenthic fauna. Based on the analysis of seafloor photographic transects that were taken from elevated areas downslope into the abyssal plains in the eastern CCZ, a similar distribution of habitats was observed on five different bathymetric elevations including abyssal hills as well as the foothills of two seamounts. Rock outcrops occur at the summits, surrounded by an area with varying coverage and size of polymetallic nodules, which were divided into two different habitats characterized by large and small nodules, respectively, and followed by nodule-free sediments. Megafauna composition, density and diversity varies across these habitats. While density is the highest in areas with rock outcrops (1.4 individuals per m 2 ), the biodiversity is the highest when regarding all of the habitats combined. Regarded individually, nodule-covered areas are the most diverse, whereas sediment areas without hard substratum, i.e. nodule free sediments, show the lowest biodiversity and the lowest density (0.2 individuals per m 2 ). The multinomial species classification method (CLAM) shows that most of the observed megafauna morphotypes have to be regarded as rare. The large differences between the megafaunal communities at bathymetric elevations and the abyssal plain reported from previous studies might partly be explained by the multiplicity of habitats. This high heterogeneity can lead to a more diversified community at elevations, although most habitats can also be observed in the abyssal plain.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-12
    Description: Due to the increasing challenge of meeting human demands for metals from land-based resources, interest in extracting mineral ores from the deep sea has gained momentum in recent years. Targeted mining of deep-seabed minerals could have adverse effects on the associated ecosystems, but knowledge on the biological communities found there, their structure and functions is still limited. The focus of this study is to provide an overview on isopod crustaceans from the Clarion Clipperton Fracture Zone (CCFZ), an area well-known for its abundance of high-grade polymetallic nodules. Isopods generally comprise an important part of the macrofaunal communities of soft deep-sea sediments and indeed are one of the most dominant macrobenthic groups in the CCFZ. In this review, we have compiled all available data and information on isopod diversity and distribution in the CCFZ in a hybrid manner, which includes published data from the literature as well as the analysis of previously unpublished sources and newly collected data. Although isopods are one of the more prevalent and better-known groups of the CCFZ fauna, this study shows that it is still remarkably difficult to obtain a clear perception of isopod diversity and distribution, as well as the factors that could be responsible for the observed patterns. In many places, knowledge remains incomplete, which is largely due to the low sampling and taxonomic effort, non-standardised sample protocols and the limited taxonomic inter-calibration between studies. The latter is pivotal due to the high proportion of undescribed and presumably new species that typically occur there. An important starting point would therefore be to increase sampling effort and its spatial and temporal coverage in a standardised way, to intensify (integrative) taxonomic work as well as to facilitate sample and data exchange between scientists and contractors. These are fundamental requirements to improve our understanding of the biodiversity of isopods, but also of other faunal groups, in the CCFZ, before mining operations begin.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...