ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-02-02
    Description: DNA molecules that contain the human alpha- and beta s-globin genes inserted downstream of erythroid-specific, deoxyribonuclease I super-hypersensitive sites were coinjected into fertilized mouse eggs and a transgenic mouse line was established that synthesizes human sickle hemoglobin (Hb S). These animals were bred to beta-thalassemic mice to reduce endogenous mouse globin levels. When erythrocytes from these mice were deoxygenated, greater than 90 percent of the cells displayed the same characteristic sickled shapes as erythrocytes from humans with sickle cell disease. Compared to controls the mice have decreased hematocrits, elevated reticulocyte counts, lower hemoglobin concentrations, and splenomegaly, which are all indications of the anemia associated with human sickle cell disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryan, T M -- Townes, T M -- Reilly, M P -- Asakura, T -- Palmiter, R D -- Brinster, R L -- Behringer, R R -- HD-09172/HD/NICHD NIH HHS/ -- HL-35559/HL/NHLBI NIH HHS/ -- HL43508/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 2;247(4942):566-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, School of Medicine, University of Alabama, Birmingham 35294.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2154033" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/blood/genetics ; Animals ; DNA/genetics ; DNA Transposable Elements ; Erythrocytes/ultrastructure ; Genes ; Globins/*genetics ; Hemoglobin, Sickle/*genetics/isolation & purification ; Humans ; Mice ; Mice, Transgenic ; Microscopy, Electron ; Microscopy, Electron, Scanning
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-07
    Description: The mammalian olfactory system may transduce odorant information via a G protein-mediated adenosine 3',5'-monophosphate (cAMP) cascade. A newly discovered adenylyl cyclase, termed type III, has been cloned, and its expression was localized to olfactory neurons. The type III protein resides in the sensory neuronal cilia, which project into the nasal lumen and are accessible to airborne odorants. The enzymatic activity of the type III adenylyl cyclase appears to differ from nonsensory cyclases. The large difference seen between basal and stimulated activity for the type III enzyme could allow considerable modulation of the intracellular cAMP concentration. This property may represent one mechanism of achieving sensitivity in odorant perception.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakalyar, H A -- Reed, R R -- 5T32CA09339/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1403-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2255909" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/*physiology ; Amino Acid Sequence ; Animals ; Brain/enzymology/physiology ; Cell Line ; Clone Cells ; Cloning, Molecular ; Gene Library ; Glycosylation ; Isoenzymes/genetics/*physiology ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Neurons, Afferent/enzymology/physiology ; Nose/enzymology/physiology ; *Odors ; Protein Conformation ; Rats ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-11-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez, F -- Poet, T S -- Watson, R R -- New York, N.Y. -- Science. 1990 Nov 23;250(4984):1070.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2251495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cocaine/metabolism/pharmacokinetics ; Hair/*chemistry/metabolism ; Humans ; Male ; Mice ; Morphine/metabolism/pharmacokinetics ; *Substance Abuse Detection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-12
    Description: Recent reappraisals of the role of ionized magnesium in cell function suggest that many cells maintain intracellular free Mg2+ at low concentrations (0.1 to 0.7 mM) and that external agents can influence cell function via changes in intracellular Mg2+ concentration. Depolarization and hyperpolarization of voltage-clamped Paramecium elicited a Mg2(+)-specific current, IMg. Both Co2+ and Mn2+ were able to substitute for Mg2+ as charge carriers, but the resultant currents were reduced compared with Mg2+ currents. Intracellular free Mg2+ concentrations were estimated from the reversal potential of IMg to be about 0.39 mM. The IMg was inhibited when external Ca2+ was removed or a Ca2+ chelator was injected, suggesting that its activation was Ca2(+)-dependent.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Preston, R R -- GM22714/GM/NIGMS NIH HHS/ -- GM36386/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 12;250(4978):285-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218533" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/pharmacology ; Electric Stimulation ; Magnesium/pharmacology/*physiology ; Manganese/pharmacology ; Membrane Potentials/drug effects ; Paramecium/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1990-10-05
    Description: Rhodopsin is a member of a family of receptors that contain seven transmembrane helices and are coupled to G proteins. The nature of the interactions between rhodopsin mutants and the G protein, transduction (Gt), was investigated by flash photolysis in order to monitor directly Gt binding and dissociation. Three mutant opsins with alterations in their cytoplasmic loops bound 11-cis-retinal to yield pigments with native rhodopsin absorption spectra, but they failed to stimulate the guanosine triphosphatase activity of Gt. The opsin mutations included reversal of a charged pair conserved in all G protein-coupled receptors at the cytoplasmic border of the third transmembrane helix (mutant CD1), replacement of 13 amino acids in the second cytoplasmic loop (mutant CD2), and deletion of 13 amino acids from the third cytoplasmic loop (mutant EF1). Whereas mutant CD1 failed to bind Gt, mutants CD2 and EF1 showed normal Gt binding but failed to release Gt in the presence of guanosine triphosphate. Therefore, it appears that at least the second and third cytoplasmic loops of rhodopsin are required for activation of bound Gt.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franke, R R -- Konig, B -- Sakmar, T P -- Khorana, H G -- Hofmann, K P -- New York, N.Y. -- Science. 1990 Oct 5;250(4977):123-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218504" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/metabolism ; Chromosome Deletion ; Micelles ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Photolysis ; Protein Binding ; Protein Conformation ; Rhodopsin/genetics/*metabolism ; Transducin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-06-28
    Description: Traditional approaches to neural coding characterize the encoding of known stimuli in average neural responses. Organisms face nearly the opposite task--extracting information about an unknown time-dependent stimulus from short segments of a spike train. Here the neural code was characterized from the point of view of the organism, culminating in algorithms for real-time stimulus estimation based on a single example of the spike train. These methods were applied to an identified movement-sensitive neuron in the fly visual system. Such decoding experiments determined the effective noise level and fault tolerance of neural computation, and the structure of the decoding algorithms suggested a simple model for real-time analog signal processing with spiking neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bialek, W -- Rieke, F -- de Ruyter van Steveninck, R R -- Warland, D -- New York, N.Y. -- Science. 1991 Jun 28;252(5014):1854-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2063199" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Diptera ; Mathematics ; *Models, Neurological ; Neurons/*physiology ; Neurons, Afferent/*physiology ; Photoreceptor Cells/physiology ; Visual Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-10-02
    Description: Some individuals infected with hepatitis C virus (HCV) experience multiple episodes of acute hepatitis. It is unclear whether these episodes are due to reinfection with HCV or to reactivation of the original virus infection. Markers of viral replication and host immunity were studied in five chimpanzees sequentially inoculated over a period of 3 years with different HCV strains of proven infectivity. Each rechallenge of a convalescent chimpanzee with the same or a different HCV strain resulted in the reappearance of viremia, which was due to infection with the subsequent challenge virus. The evidence indicates that HCV infection does not elicit protective immunity against reinfection with homologous or heterologous strains, which raises concerns for the development of effective vaccines against HCV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farci, P -- Alter, H J -- Govindarajan, S -- Wong, D C -- Engle, R -- Lesniewski, R R -- Mushahwar, I K -- Desai, S M -- Miller, R H -- Ogata, N -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):135-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hepatitis Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1279801" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Aged ; Alanine Transaminase/biosynthesis ; Animals ; Base Sequence ; Hepacivirus/physiology ; Hepatitis Antibodies/biosynthesis ; Hepatitis C/*immunology ; Hepatitis C Antibodies ; Humans ; Immunity, Active ; Longitudinal Studies ; Molecular Sequence Data ; Pan troglodytes ; Polymerase Chain Reaction ; Sequence Homology ; Transcription, Genetic ; Viremia ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-05-17
    Description: Most bacterial pathogens initiate infectious diseases by adhering to host cells. Bacterial adherence to nonphagocytic cells usually leads to extracellular colonization; however, many invasive microorganisms enter host cells after binding to the host cell surface. It is unclear why bacterial adherence can result in these two different fates for the microorganism. Analyses of model systems, such as the uptake of enteropathogenic Yersinia into cultured cells, indicate that the particular mammalian cell receptors bound and the nature of the binding event dictate whether the bacterium remains extracellular or enters host cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isberg, R R -- AI23538/AI/NIAID NIH HHS/ -- AI29719/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 May 17;252(5008):934-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1674624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bacterial Adhesion ; *Bacterial Physiological Phenomena ; Extracellular Matrix/physiology ; Fimbriae, Bacterial/physiology ; Humans ; Models, Biological ; Polysaccharides, Bacterial/physiology ; Yersinia/pathogenicity/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-09-21
    Description: The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumann, R R -- Leong, S R -- Flaggs, G W -- Gray, P W -- Wright, S D -- Mathison, J C -- Tobias, P S -- Ulevitch, R J -- AI 15136/AI/NIAID NIH HHS/ -- AI 25563/AI/NIAID NIH HHS/ -- GM 28485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1429-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2402637" target="_blank"〉PubMed〈/a〉
    Keywords: *Acute-Phase Proteins ; Amino Acid Sequence ; Animals ; Base Sequence ; Blood Proteins/*genetics ; Carrier Proteins/*genetics/metabolism ; Gene Library ; Humans ; Kinetics ; Lipid A/metabolism ; Lipopolysaccharides/*metabolism/pharmacology ; Male ; *Membrane Glycoproteins ; Molecular Sequence Data ; Oligonucleotide Probes ; Rabbits ; Sequence Homology, Nucleic Acid ; Sheep ; Staphylococcus aureus ; Tumor Necrosis Factor-alpha/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-07-31
    Description: Although nonclassical (class I-b) gene products represent the majority of murine major histocompatibility complex (MHC) genes, the role of these relatively nonpolymorphic molecules remains uncertain. Recently, one such protein, H-2M3 (formerly designated Hmt), was shown to bind and specifically present N-formylated peptides to cytotoxic T lymphocytes. Because N-formylation is characteristic of prokaryotic proteins, this MHC molecule may be especially adapted for a role in the mammalian defense against bacterial attack. The current studies demonstrate that an MHC molecule, indistinguishable from H-2M3, presents antigens derived from the intracellular pathogen Listeria monocytogenes to Listeria-specific CD8+ cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurlander, R J -- Shawar, S M -- Brown, M L -- Rich, R R -- R01 AI18073/AI/NIAID NIH HHS/ -- R01 AI18882/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 31;257(5070):678-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1496381" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Antigens, Bacterial/*immunology ; Formates/immunology/metabolism ; H-2 Antigens/*immunology/metabolism ; Histocompatibility Antigens Class I/*immunology/metabolism ; Listeria monocytogenes/*immunology ; Listeriosis/*immunology ; Macrophages/immunology ; Mice ; Mice, Inbred BALB C ; Peptides/immunology/metabolism ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...