ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
  • 1995-1999  (2)
Collection
Publisher
Language
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 57 (1995), S. 1251-1259 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Epoxy functionalized siloxanes (EFS) are a novel class of UV curable monomers that can be rapidly photopolymerized to give transparent coatings and composites. Thin films of these materials have been subjected to low Earth orbit exposure to atomic oxygen (AO) aboard the space shuttle. It was found that UV cured samples of all four different EFS monomers exhibited excellent AO resistance both to ambient in-flight conditions as well as exposure at 120°C. Based on SEM, STM, XPS, and weight loss data, it was proposed that AO exposure of these materials efficiently produces a thin layer of SiOx at the surface of the sample. This layer provides a barrier toward further attack by AO. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-06-08
    Description: Global coupled ocean-atmosphere models are a valuable tool to study climate variability and to project future changes. Many of the present global coupled models have an ocean component with a low horizontal resolution that does not permit ocean mesoscale eddies. The ocean mesoscale is not only important for the ocean dynamics but can also have an imprint on the atmosphere. Increasing the horizontal resolution of the ocean model component is therefore crucial to improve simulations of the coupled climate system. In this study, a newly developed version of Australia’s ACCESS-CM2 climate model with a higher-resolution ocean-sea ice component (1/4°) is evaluated under present climate conditions against (i) the previous coarser (1°) version and (ii) against the ocean-only counterparts of the ACCESS-OM2 ocean-sea ice model suite. The 1/4° ACCESS-CM2 overall improves the ocean state compared to the 1° version but inhibits a large decadal variability in the upper ocean heat content that is not seen in any of the other models. The signal originates in the North Atlantic, can be traced to the Southern Hemisphere and dominates the global mean. Another notable aspect of the 1/4° ACCESS-CM2 is the large Drake Passage transport, a metric that many models do not simulate accurately, and which is underestimated in the ACCESS-OM2 models but represented reasonably well in the 1° ACCESS-CM2 version compared to observations.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-12-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: The Australian Community Climate and Earth System Simulator (ACCESS) has contributed to the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 (CMIP6) using two fully coupled model versions (ACCESS-CM2 and ACCESS-ESM1.5) and two ocean–sea-ice model versions (1° and 0.25° resolution versions of ACCESS-OM2). The fully coupled models differ primarily in the configuration and version of their atmosphere components (including the aerosol scheme), with smaller differences in their sea-ice and land model versions. Additionally, ACCESS-ESM1.5 includes biogeochemistry in the land and ocean components and can be run with an interactive carbon cycle. CMIP6 comprises core experiments and associated thematic Model Intercomparison Projects (MIPs). This paper provides an overview of the CMIP6 submission, including the methods used for the preparation of input forcing datasets and the post-processing of model output, along with a comprehensive list of experiments performed, detailing their initialisation, duration, ensemble number and computational cost. A small selection of model output is presented, focusing on idealised experiments and their variants at global scale. Differences in the climate simulation of the two coupled models are highlighted. ACCESS-CM2 produces a larger equilibrium climate sensitivity (4.7°C) than ACCESS-ESM1.5 (3.9°C), likely a result of updated atmospheric parameterisation in recent versions of the atmospheric component of ACCESS-CM2. The idealised experiments run with ACCESS-ESM1.5 show that land and ocean carbon fluxes respond to both changing atmospheric CO2 and to changing temperature. ACCESS data submitted to CMIP6 are available from the Earth System Grid Federation (https://doi.org/10.22033/ESGF/CMIP6.2281 and https://doi.org/10.22033/ESGF/CMIP6.2288). The information provided in this paper should facilitate easier use of these significant datasets by the broader climate community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...