ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Highlights • We interpret the Four Way Closure Ridge (FWCR) and the Ridge A as a set of bi-vergent folds, a detachment fold and a trishear fault propagation, which formed sequentially over a strong detachment. • We suggest a quantification of the strain compaction of Ridge A and FWCR, finding correlation of dilation and porosity lost, with the variation of the physical properties—increase in resistivity and seismic velocity—measured by Berndt et al. (2019). • We conclude that the sourced fluids from the calculated mechanical compaction alone could not explain the observed hydrate accumulations in the FWCR. Additional sources, possibly from depth, are required. • Using growth strata as constraints, we have conduced kinematic structural modeling and finite strain calculations. Such combination of analyses might become helpful for research on gas hydrate and other km-scale structural geology in active margins. Abstract Understanding the structural evolution of complex convergent plate boundaries could contribute to linking the anticipated fluid production and transportation at depth to the measured amounts of fluid stored in hydrate methane. To better understand fluid behavior within a complex convergent boundary, we propose an evolution model for a set of doubly plunging, oppositely-verging structures referred to as Ridge A and the Four-Way Closure Ridge (FWCR), located offshore southwestern Tawian. The structures exhibit 1) Initial deformation along a decollement forming a seaward (westward)-verging detachment fold, followed by 2) a landward(eastward)-verging fault propagation fold (trishear) about 8 km east of the detachment fold, and 3) a westward-verging low-angle thrusting modifying the previous structures. Furthermore, finite strain analyses based on the kinematic model suggest high pore space reduction between the detachment and fault propagation folds. The volume of methane possibly expelled during the pore space reduction is not enough to explain the high hydrocarbon concentration necessary for hydrate formation. Kinematic modeling along with finite strain analyses support the possibility of deep sourced fluid migration along such bi-vergent structures at this hydrate-rich site.
    Type: Article , PeerReviewed
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Gas release from wells may counteract efforts to mitigate greenhouse gas emissions. • An approach for assessing methane release from marine decommissioned wells. • This gas release largely depends on the presence of shallow gas accumulations. • Methane release from hydrocarbon wells represents a major source in the North Sea. Abstract Hydrocarbon gas emissions from with decommissioned wells are an underreported source of greenhouse gas emissions in oil and gas provinces. The associated emissions may partly counteract efforts to mitigate greenhouse gas emissions from fossil fuel infrastructure. We have developed an approach for assessing methane leakage from marine decommissioned wells based on a combination of existing regional industrial seismic and newly acquired hydroacoustic water column imaging data from the Central North Sea. Here, we present hydroacoustic data which show that 28 out of 43 investigated wells release gas from the seafloor into the water column. This gas release largely depends on the presence of shallow gas accumulations and their distance to the wells. The released gas is likely primarily biogenic methane from shallow sources. In the upper 1,000 m below the seabed, gas migration is likely focused along drilling-induced fractures around the borehole or through non-sealing barriers. Combining available direct measurements for methane release from marine decommissioned wells with our leakage analysis suggests that gas release from investigated decommissioned hydrocarbon wells is a major source of methane in the North Sea (0.9-3.7 [95% confidence interval = 0.7-4.2] kt yr−1 of CH4 for 1,792 wells in the UK sector of the Central North Sea). This means hydrocarbon gas emissions associated with marine hydrocarbon wells are not significant for the global greenhouse gas budget, but have to be considered when compiling regional methane budgets.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Highlights • Combining porewater geochemistry, geochemical modeling and subsurface geophysical data in order to understand the fluid flow system of Kerch seep area. • This seep area is not in steady state. • Methane transport is in the form of gas bubbles not porewater advection. • High surface temperatures are the result of hydrate formation and not an indication for elevated geothermal gradients. • Modeling says this seep is young (〈500 years old). Abstract High-resolution 3D seismic data in combination with deep-towed sidescan sonar data and porewater analysis give insights into the seafloor expression and the plumbing system of the actively gas emitting Kerch seep area, which is located in the northeastern Black Sea in around 900 m water depth, i.e. well within the gas hydrate stability zone (GHSZ). Our analysis shows that the Kerch seep consists of three closely spaced but individual seeps above a paleo-channel-levee system of the Don Kuban deep-sea fan. We show that mounded seep morphology results from sediment up-doming due to gas overpressure. Each of the seeps hosts its own gas pocket underneath the domes which are fed with methane of predominantly microbial origin along narrow pipes through the GHSZ. Methane transport occurs dominantly in the form of gas bubbles decoupled from fluid advection. Elevated sediment temperatures of up to 0.3 °C above background values are most likely the result of gas hydrate formation within the uppermost 10 m of the sediment column. Compared to other seeps occurring within the GHSZ in the Black Sea overall only scarce gas indications are present in geoacoustic and geophysical data. Transport-reaction modeling suggests that the Kerch seep is a young seep far from steady state and probably not more than 500 years old.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: We present porosity and free gas estimations and their uncertainties at anactive methane venting site in the UK sector of the North Sea. In the Scan-ner Pockmark area in about 150m water depth, we performed a multi-disciplinary experiment to investigate the physical properties of fluid flowstructures within unconsolidated glaciomarine sediments. Here we focus onthe towed controlled source electromagnetic (CSEM) data analysis with con-straints from seismic reflection and core logging data. Inferred backgroundresistivity values vary between 0.6–1 Ωm at the surface and 1.9–2.4 Ωm at150 mbsf. We calibrate Archie’s parameters with measurements on cores, andestimate porosities of about 50±10% at the seafloor decreasing to 25±3% at 150 mbsf which matches variations expected for mechanical compaction ofclay rich sediments. High reflectivity in seismic reflection data is consistentwith the existence of a gas pocket. A synthetic study of varying gas contentin this gas pocket shows that at least 33±8% of free gas are required to causea distinct CSEM data anomaly. Real data inversions with seismic constraintssupport the presence of up to 34±14% free gas in a 30–40 m thick gas pocketunderneath the pockmark within the stratigraphic highs of a till layer abovethe glacial unconformity in the Aberdeen Ground Formation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (~3 m 49 below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Highlights • Unprecedented dense coverage of ocean-bottom seismometer data reveals seismic velocity variations within a vertical fluid pathway. • There are zones of both positive (faster) and negative (slower) velocity within the fluid pathway compared to the background formation velocities. • Velocity reductions are related to free gas in the fluid pathway, while the reason for velocity increases is unclear but potentially caused by cementation. Abstract Subsurface CO2 storage is a key strategy to reduce greenhouse gas emission, but leakage of CO2 along natural fluid pathways may affect storage formation integrity. However, the internal structure and the physical properties of these focused fluid conduits are poorly understood. Here, we present a three-dimensional seismic velocity model of an active fluid conduit beneath the Scanner Pockmark in the Central North Sea, derived from ocean-bottom seismometer data. We show that the conduit, which manifests as a pipe structure in seismic data, is separated into two parts. The upper part, extending to 260 m depth, i.e. 110 m below the seafloor, is characterised by seismic velocities up to 100 m/s slower than the surrounding strata. The deeper part is characterized by a 50 m/s seismic velocity increase compared to background velocity. We suggest that the upper part of the pipe structure represents a network of open fractures, partly filled with free gas, while the reason for the velocity increase in the lower part remains speculative. These observations suggest that active pipes can be internally heterogeneous with some intervals probably being open fluid pathways and other intervals being closed. This study highlights the complexity in evaluating focused fluid conduits and the necessity of their detailed assessment when selecting CO2 storage sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Fluid-escape structures within sedimentary basins permit pressure-driven focused fluid flow through inter-connected faults, fractures and sediment. Seismically-imaged chimneys are recognised as fluid migration pathways which cross-cut overburden stratigraphy, hydraulically connecting deeper strata with the seafloor. However, the geological processes in the sedimentary overburden which control the mechanisms of genesis and temporal evolution require improved understanding. We integrate high resolution 2D and 3D seismic reflection data with sediment core data to characterise a natural, active site of seafloor methane venting in the UK North Sea and Witch Ground Basin, the Scanner pockmark complex. A regional assessment of shallow gas distribution presents direct evidence of active and palaeo-fluid migration pathways which terminate at the seabed pockmarks. We show that these pockmarks are fed from a methane gas reservoir located at 70 metres below the seafloor. We find that the shallow reservoir is a glacial outwash fan, that is laterally sealed by glacial tunnel valleys. Overpressure generation leading to chimney and pockmark genesis is directly controlled by the shallow geological and glaciogenic setting. Once formed, pockmarks act as drainage cells for the underlying gas accumulations. Fluid flow occurs through gas chimneys, comprised of a sub-vertical gas-filled fracture zone. Our findings provide an improved understanding of focused fluid flow and pockmark formation within the sediment overburden, which can be applied to subsurface geohazard assessment and geological storage of CO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The presence of gas hydrates is well known in the marine realm southwest off Taiwan due to the widespread distribution of bottom simulating reflectors in seismic records. To learn more about gas hydrate systems and their dynamics at passive and active margins, we drilled boreholes with MARUM-MeBo200 seafloor drill rig at areas where geophysical indications for gas hydrates have been detected in the past. Several gas hydrate proxies like negative chloride anomalies in the pore water, cold spots detected by infrared thermal scans on cores, increased resistivity, and lithological parameters clearly showed the presence of hydrates in the drilled sections. However, gas hydrate was not recovered by MeBo most likely because of small crystal sizes which dissociated during recovery from the seafloor. Three holes were drilled at southern summit of Formosa Ridge down to 126 m below seafloor (mbsf) and recovered sediments from which in situ hydrate saturation values were estimated between 1 and 10% at 15–42 mbsf and even higher values of up to 38% below 100 mbsf. The latter are probably related to the sealing effect of carbonate precipitation which occur at 85–95 mbsf directly above the hydrate-enriched layer. Four holes were drilled at Four-Way Closure Ridge where a maximum drilling depth of 143.90 m was reached. Hydrate presence starts in 65 mbsf continuing down-core with a range of 1–29% gas hydrate saturation in fine-grained homogenous clay. An abrupt change to higher gas hydrate saturation values of up to 80% occurs below 109 mbsf where silty and sandy turbidite layers are often intercalated. Such high gas hydrate contents only occur in the sand layers and not in the fine-grained sediments intercalated to the sand deposits.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Highlights • Ancient and modern hydrothermal venting systems occur offshore mid-Norway and Java. • They can share morphologies, eruptive behavior and develop similarly. • Modern hydrothermal venting systems are relevant analogues for ancient systems. Abstract Ancient hydrothermal vent complexes have released large volumes of greenhouse gases in the past causing global warming, and similar modern vent structures are potential geohazards. In the NE Atlantic, thousands of hydrothermal vent complexes were formed during the Paleocene-Eocene Thermal Maximum. In Java, Indonesia, the erupting Lusi sediment-hosted geothermal system caused the displacement of 40,000 people. In order to determine how ancient and modern hydrothermal venting systems are related, we map a well-defined buried hydrothermal vent complex offshore mid-Norway using 3D seismic reflection data and then compare it to the active Lusi eruption (since 2006) and the neighboring inactive Porong Structure. These are characterized using 2D seismic reflection data, borehole data and field observations. The venting structures are subcircular in plan-view and a few kilometers in diameter. They are funnel-shaped in profiles, with inward-dipping beds surrounding the conduits. The hydrothermal vent complex offshore mid-Norway reveals five seismically-distinct vent fill facies units. Importantly, two of the facies units are separated by an angular unconformity, clearly indicating that the depositional events within the vent fill were distinct. Hydrothermal fluids are interpreted to have led to the fluidization of mud-rich sediments which were erupted and deposited in and around the vent complex. Interpretation of a seismically transparent body along the conduit of the Norwegian venting structure, and the abrupt widening of the conduit at the Porong Structure, are interpreted to be caused by changes in fluid-flow dynamics as the fluids rise and get released from the host-rock. The hydrothermal venting systems in Java and offshore mid-Norway are found to be morphologically similar and are interpreted to form as the result of the transport and eruption of fluidized sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: In 1964, exploration drilling in the German Sector of the North Sea hit a gas pocket at ∼2900 m depth below the seafloor and triggered a blowout, which formed a 550 m-wide and up to 38 m deep seafloor crater now known as Figge Maar. Although seafloor craters formed by fluid flow are very common structures, little is known about their formation dynamics. Here, we present 2D reflection seismic, sediment echosounder, and multibeam echosounder data from three geoscientific surveys of the Figge Maar blowout crater, which are used to reconstruct its formation. Reflection seismic data support a scenario in which overpressured gas ascended first through the lower part of the borehole and then migrated along steeply inclined strata and faults towards the seafloor. The focused discharge of gas at the seafloor removed up to 4.8 Mt of sediments in the following weeks of vigorous venting. Eyewitness accounts document that the initial phase of crater formation was characterized by the eruptive expulsion of fluids and sediments cutting deep into the substrate. This was followed by a prolonged phase of sediment fluidization and redistribution widening the crater. After fluid discharge ceased, the Figge Maar acted as a sediment trap reducing the crater depth to ∼12 m relative to the surrounding seafloor in 2018, which corresponds to an average sedimentation rate of ∼22,000 m 3 /yr between 1995 and 2018. Hydroacoustic and geochemical data indicate that the Figge Maar nowadays emits primarily biogenic methane, predominantly during low tide. The formation of Figge Maar illustrates hazards related to the formation of secondary fluid pathways, which can bypass safety measures at the wellhead and are thus difficult to control.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...