ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2023-12-27
    Beschreibung: The EU Center of Excellence for Exascale in Solid Earth (ChEESE) develops exascale transition capabilities in the domain of Solid Earth, an area of geophysics rich in computational challenges embracing different approaches to exascale (capability, capacity, and urgent computing). The first implementation phase of the project (ChEESE-1P; 2018–2022) addressed scientific and technical computational challenges in seismology, tsunami science, volcanology, and magnetohydrodynamics, in order to understand the phenomena, anticipate the impact of natural disasters, and contribute to risk management. The project initiated the optimisation of 10 community flagship codes for the upcoming exascale systems and implemented 12 Pilot Demonstrators that combine the flagship codes with dedicated workflows in order to address the underlying capability and capacity computational challenges. Pilot Demonstrators reaching more mature Technology Readiness Levels (TRLs) were further enabled in operational service environments on critical aspects of geohazards such as long-term and short-term probabilistic hazard assessment, urgent computing, and early warning and probabilistic forecasting. Partnership and service co-design with members of the project Industry and User Board (IUB) leveraged the uptake of results across multiple research institutions, academia, industry, and public governance bodies (e.g. civil protection agencies). This article summarises the implementation strategy and the results from ChEESE-1P, outlining also the underpinning concepts and the roadmap for the on-going second project implementation phase (ChEESE-2P; 2023–2026).
    Beschreibung: EU
    Beschreibung: Published
    Beschreibung: 47-61
    Beschreibung: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Beschreibung: JCR Journal
    Schlagwort(e): HPC ; Physical models ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-01-30
    Beschreibung: Very large tsunamis are associated with low probabilities of occurrence. In many parts of the world, these events have usually occurred in a distant time in the past. As a result, there is low risk perception and a lack of collective memories, making tsunami risk communication both challenging and complex. Furthermore, immense challenges lie ahead as population and risk exposure continue to increase in coastal areas. Through the last decades, tsunamis have caught coastal populations off-guard, providing evidence of lack of preparedness. Recent tsunamis, such as the Indian Ocean Tsunami in 2004, 2011 Tohoku and 2018 Palu, have shaped the way tsunami risk is perceived and acted upon. Based on lessons learned from a selection of past tsunami events, this paper aims to review the existing body of knowledge and the current challenges in tsunami risk communication, and to identify the gaps in the tsunami risk management methodologies. The important lessons provided by the past events call for strengthening community resilience and improvement in risk-informed actions and policy measures. This paper shows that research efforts related to tsunami risk communication remain fragmented. The analysis of tsunami risk together with a thorough understanding of risk communication gaps and challenges is indispensable towards developing and deploying comprehensive disaster risk reduction measures. Moving from a broad and interdisciplinary perspective, the paper suggests that probabilistic hazard and risk assessments could potentially contribute towards better science communication and improved planning and implementation of risk mitigation measures.
    Beschreibung: Published
    Beschreibung: 102771
    Beschreibung: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Beschreibung: JCR Journal
    Schlagwort(e): Tsunami; Risk Perception; Communication; Italy; Mediterranean; Coastal Hazards; Sociology; Emergency Communication; Risk Management; Review; NEAM; UNESCO; Tsunami Ready ; 05.03. Educational, History of Science, Public Issues
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-06-06
    Beschreibung: The ability to image the underground structures of volcanoes is limited by the precision, resolution and pene tration depth of each single geophysical method. In order to improve the knowledge of specific volcanic edifices and to better understand the general behavior of structures, the use of a combination of methods is strongly recommended to exploit and maximize their complementary capabilities of resolution and penetration depths. In this work a large dataset of seismic and electromagnetic measurements has been used to provide a more detailed and improved geophysical image of the shallower portion of the northern sector of Ischia Island(Campania region, Italy), severely hit by the August 21, 2017 earthquake (Mw 3.9). We analysed data by using different methodologies: Horizontal-to-Vertical Spectral Ratio (HVSR), seismic array technique (f k),polarization analysis and Time Domain ElectroMagnetic (TDEM) survey. These methods are sensitive in a different way to tectonic features, lithologies, layer geometry and fluid distribution. Thus, their combination is useful for studying sites with complex crustal structures such as Ischia island, which is characterized by a well-developed geothermal system linked to the presence of a shallow magmatic body. Results of our study provides detailed information of the physical properties of the subsoil through: 1) the spatial distribution of the amplification parameters of ground motion, showing frequency peaks below 1 Hz and/or between 1 Hz and 5 Hz; 2) the definition of the velocity models up to 600 m depth, with shear wave velocities ranging from 150 m/s for the shallower layers to 2500 m/s for the half space; 3) the recognition of the correlation between the principal fault structures and polarization directions of the noise wavefield, mostly oriented along EW and NE-SW directions; 4) the resistivity models of the first 80 m depth with high resistivity values of the shallow layers in the range 50–100 Ω.m and low resistivity values of the bottom layers in the range 1–10 Ω.m.
    Beschreibung: Published
    Beschreibung: 107820
    Beschreibung: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Beschreibung: 2V. Struttura e sistema di alimentazione dei vulcani
    Beschreibung: JCR Journal
    Schlagwort(e): Ischia volcanic island ; Shear-wave velocity of volcanic deposits ; Site effects ; Seismic noise analysis ; 1D Resistivity models ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-01-26
    Beschreibung: Lava flows associated with effusive volcanic eruptions require accurate modelling in order to forecast potential paths of destruction. This study presents a new depth-averaged model that overcomes the classical shallow water hypothesis by incorporating several enhancements, allowing for a more precise representation of the flow dynamics and behaviour: (i) a parabolic profile which captures the vertical variations in velocity within the flow; (ii) a non-constant vertical profile for temperature, enabling a more realistic representation of thermal gradients within the flowing lava; (iii) a viscoplastic temperature-dependent viscosity model to account for the non-Newtonian behaviour of lava; (iv) a transport equation for temperature accounting for the thermal heat exchanges with the environment and the soil. The first two modifications allow us to describe, under reasonable assumptions, the vertical structure of the flow, and for this reason, we put our model in the class of 2.5D models. To assess the performance of our modified model, comprehensive benchmark tests are conducted using both laboratory experiments and real-world lava flow data related to the 2014–2015 Pico do Fogo, Cape Verde, effusive eruption. The benchmarking analysis demonstrates that this model accurately reproduces, with short execution times, essential flow features such as flow front advancement and cooling processes.
    Beschreibung: Published
    Beschreibung: 107935
    Beschreibung: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Beschreibung: JCR Journal
    Schlagwort(e): Lava flows ; numerical model ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-06-21
    Beschreibung: Stromboli (Italy) is an open-vent volcano with persistent explosive activity producing up to five hundred mild explosions per day. Fluctuations in explosion intensity, varying even by orders of magnitude in terms of emitted volume and their subsequent impact on the surrounding regions, sometimes occur abruptly. Consequently, identifying precursors of larger eruptive activities, particularly for more intense (paroxysmal) explosions, is challenging. In order to search for anomalies in the pre-paroxysm activity related to the summer 2019 eruption, we applied a hybrid method to the automatic analysis of geophysical and geochemical time series. This approach is based on the combination of two methods: 1. the Empirical Mode Decomposition (EMD) and 2. the Support Vector Regression (SVR). The aggregation of these two methods allowed us to identify anomalies in the patterns of the geophysical and geochemical parameters measured on Stromboli in a ten-month period including the July–August 2019 eruption. The results of this study are encouraging for an improvement of the monitoring systems and for volcano early warning applications.
    Beschreibung: This work has been supported by the INGV project Pianeta Dinamico 2023-2025 - ObseRvation, Measurement and modelling of Eruptive processes (ORME), and partially supported by the Progetto Strategico Dipartimentale INGV 2019 “Forecasting eruptive activity at Stromboli volcano: timing, eruptive style, size, intensity and duration” (FIRST, Delibera n. 144/2020; Scientific Responsibility: S.C.). Furthermore, this research has benefited from the support of Convenzione B2 DPC-INGV 2022-2024, Stromboli, Task 1.3 “Development of a unique activity index and estimation of the probability of the transition between ‘ordinary’ and ‘extraordinary’ eruptive activity”, and of the INGV project “Reti Multiparametriche”, Task A2 “Development of methods for the identification of precursors of Stromboli's paroxysms and major explosions based on multiparametric data analysis and study of possible early warning techniques”.
    Beschreibung: In press
    Beschreibung: 108131
    Beschreibung: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Beschreibung: JCR Journal
    Schlagwort(e): Stromboli volcano ; Volcanic monitoring ; Data analysis ; Multiparametric geophysics ; Paroxysmal explosions ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...