ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-27
    Description: Extreme weather conditions and widespread drying induced by climate change will increase the risk and severity of wildfires increasing the importance of the wildfire emissions in the climate system. Aerosol emissions from the wildfires may affect the cloud formation by increasing the concentration of cloud condensation nuclei (CCN) and by affecting the composition and hygroscopicity (k) of the aerosol population. In this study, we investigate the effect of long range transported (originated from South-Eastern Europe) wildfire plume on cloud microphysics at two sites: Puijo SMEAR IV in Eastern Finland, and Zeppelin Observatory in Svalbard, high Arctic. We use both in-situ and satellite observations to investigate the changes in aerosol population, cloud activation and cloud properties.During the wildfire plume period, the aerosol hygroscopicity slightly increased compared to clean periods at Puijo station, but decreased at Zeppelin. A substantial increase in aerosol number concentration in the accumulation mode size range was observed at both stations. Despite the increase in k, the increase in critical diameter for activation was observed as the water supersaturation was decreased due to increased aerosol concentration at Puijo station. A substantial increase in CCN concentration and cloud droplet number concentration (CDNC) was observed based on in-situ observations at both stations during the wildfire plume period. Also satellite observations revealed a comparable change in CDNC and cloud optical thickness over Puijo station. Our results demonstrate that the long range transported (3-5 days) wildfire plume can significantly affect cloud formation in environments where the background concentrations are relatively low.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-12
    Description: Mixed phase clouds (MPC) play an important role in the Arctic climate through their interaction with radiation. The amount of ice in MPCs determines their microphysical properties and is one of the main sources of uncertainties in models. One key parameter driving the ice content in MPC’s is the amount of available ice nucleating particles (INP) in the Arctic atmosphere. To better represent INP in models, observations that quantify and describe the properties of INP and appoint the respective sources are urgently needed. One contributor to INP in the Arctic are bioaerosols, such as bacteria or spores, which are regarded as efficient INP at high temperatures. However, their sources and presence in the Arctic are poorly understood. Within this work, we report long-term observations of bioaerosols and INP which took place at the Zeppelin Observatory, an Arctic mountain site, in the archipelago of Svalbard. Bioaerosols were identified with single-particle spectroscopic technique and were confirmed by bioaerosol tracers as well as electronic microscopy imaging. Their seasonal cycle showed elevated concentrations in summer that followed several key parameters such as ambient temperature, vegetation and snow cover, linking bioaerosols to potential local terrestrial sources. INP followed a similar seasonal cycle, exhibiting elevated concentrations of high-temperature INP in summer that closely matched the bioaerosol abundance (concentrations between 10〈sup〉-3〈/sup〉-10〈sup〉-1〈/sup〉 L-1). The high-temperature INP organic fraction reached levels above 90% in summer, strengthening the link to bioaerosols. In summary, we present the first direct links between bioaerosols and INP, along with their seasonality and quantification.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-09
    Description: Black carbon (BC) from anthropogenic or natural sources can be transported to the Arctic, where it affects the surface radiation budget by scattering and absorbing solar radiation or by acting as cloud condensation nuclei. The extent to which BC is involved in Arctic cloud formation remains uncertain due to the lack of direct and long-term observations. Here, we present a 4-year study on observations of BC concentrations of aerosols and cloud residuals (i.e. dried cloud particles) using a counterflow virtual impactor inlet at Zeppelin Observatory, Svalbard. We will show that the scavenging of BC follows a clear seasonal cycle with almost complete scavenged fractions of BC in summer and smaller scavenged fractions in late winter and early fall during the Arctic haze period. The scavenged BC fractions were positively correlated with cloud water content and showed a dependence on air temperature most likely due to cloud-microphysical processes. A source analysis showed that clouds at the site are mainly of marine origin, in opposite to non-cloudy air, where anthropogenic BC sources over land are more dominant.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 255 (1975), S. 240-241 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] So far however the molecular basis for this deficiency has not been established although Bell and Carrell2 and Cox3 suggested that the Z protein lacked some of the sialic acid residues found in the normal protein. They reasoned that a glycoprotein with fewer terminal sialic acid residues could be ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0992-7689
    Keywords: Atmospheric composition and structure (aerosols and particles; pressure, density, and temperature; instruments and techniques)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We report on the development and current capabilities of the ALOMAR Rayleigh/Mie/Raman lidar. This instrument is one of the core instruments of the international ALOMAR facility, located near Andenes in Norway at 69°N and 16°E. The major task of the instrument is to perform advanced studies of the Arctic middle atmosphere over altitudes between about 15 to 90 km on a climatological basis. These studies address questions about the thermal structure of the Arctic middle atmosphere, the dynamical processes acting therein, and of aerosols in the form of stratospheric background aerosol, polar stratospheric clouds, noctilucent clouds, and injected aerosols of volcanic or anthropogenic origin. Furthermore, the lidar is meant to work together with other remote sensing instruments, both ground- and satellite-based, and with balloon- and rocket-borne instruments performing in situ observations. The instrument is basically a twin lidar, using two independent power lasers and two tiltable receiving telescopes. The power lasers are Nd:YAG lasers emitting at wavelengths 1064, 532, and 355 nm and producing 30 pulses per second each. The power lasers are highly stabilized in both their wavelengths and the directions of their laser beams. The laser beams are emitted into the atmosphere fully coaxial with the line-of-sight of the receiving telescopes. The latter use primary mirrors of 1.8 m diameter and are tiltable within 30° off zenith. Their fields-of-view have 180 μrad angular diameter. Spectral separation, filtering, and detection of the received photons are made on an optical bench which carries, among a multitude of other optical components, three double Fabry-Perot interferometers (two for 532 and one for 355 nm) and one single Fabry-Perot interferometer (for 1064 nm). A number of separate detector channels also allow registration of photons which are produced by rotational-vibrational and rotational Raman scatter on N2 and N2+O2 molecules, respectively. Currently, up to 36 detector channels simultaneously record the photons collected by the telescopes. The internal and external instrument operations are automated so that this very complex instrument can be operated by a single engineer. Currently the lidar is heavily used for measurements of temperature profiles, of cloud particle properties such as their altitude, particle densities and size distributions, and of stratospheric winds. Due to its very effective spectral and spatial filtering, the lidar has unique capabilities to work in full sunlight. Under these conditions it can measure temperatures up to 65 km altitude and determine particle size distributions of overhead noctilucent clouds. Due to its very high mechanical and optical stability, it can also employed efficiently under marginal weather conditions when data on the middle atmosphere can be collected only through small breaks in the tropospheric cloud layers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 14 (1979), S. 1179-1186 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The deformation processes in filamentary superconducting composites at both room temperature and 4.2 K have been studied using transmission and scanning electron microscopy. In all the composites, the filaments consisted of a central core of unreacted niobium surrounded by a reacted layer of Nb3Sn. The Nb3Sn failed in an intergranular manner without any prior dislocation activity and the radial cracks formed in the Nb3Sn layer during deformation were stopped at the niobium core. The observed variations in ductility, fracture stress and secondary modulus between the different composites were accounted for quantitatively by the presence of the niobium cores.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geochemistry and health 1 (1979), S. 36-38 
    ISSN: 1573-2983
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Medicine
    Notes: Abstract The landscape architecture profession is a source of creative thinking and planning which is relatively untapped within the mining industry in the United States of America. The landscape architect has been active in European operations for years as indicated by the four examples presented. The landscape architect can provide an important interface with mine design and engineering and environmental affairs. To initiate this interface within the United States, and increase its effectiveness, six objectives are presented and discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 12 (1977), S. 2456-2464 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract An investigation of the steady-state creep of a Ni3Al.10 at% Fe alloy (γ′) has shown that two creep mechanisms were operative over the temperature range 530 to 930° C. The experimental data at low temperatures (below 680° C) were not consistent with any of the established creep theories. However, the experimental data were in good agreement with a proposed model for cross-slip from octahedral {111} planes on to cube {100} planes in Li2 crystals. Above 680° C, the rate-controlling mechanism, which had an activation energy of 3.27eV atom−1, is considered to be the removal/production of APBs during climb.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 12 (1977), S. 975-981 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The influence of composition and heat-treatment on the superconducting transition temperature, T c, of Nb3Ga has been studied. A complementary structural investigation of the alloys was carried out using X-ray diffraction to determine the degree of long-range order and the proportions of the phases present. It was found that the greater the deviation from stoichiometry, and the more disordered the Nb3Ga, the lower were the T c values. The superconducting transition temperature was maximized by producing a non equilibrium structure of essentially fully ordered, near-stoichiometric Nb3Ga.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-1634
    Keywords: unsteady ; natural convection ; vertical surface
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract In this paper, we consider the unsteady free convection boundary layer flow which is induced by time-periodic variations in the surface temperature of a vertical surface embedded in a porous medium. The basic steady flow is that of a power-law distribution where the surface temperature varies as the nth power of the distance from the leading edge. Small-amplitude time-periodic disturbances are added to this basic distribution. Both the low- and high-frequency limits are considered separately, and these are compared with a full numerical solution obtained by using the Keller-box method. Attention is restricted to the cases n≤1; when n=1, the flow is locally self-similar for any prescribed frequency of modulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...