ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 33 (1987), S. 533-549 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Penetrant transport through and solute release from continuously swelling polymers is viewed as a process associated with major structural changes in the polymer morphology. Changes in the diffusivities of penetrant and solute reflect a free volume mechanism for transport. The polymer is initially glassy with a uniform dispersion of solute. After the system is placed in contact with a thermodynamically good penetrant, a glassy/rubbery phase transition occurs at a well defined swelling interface. The Fickian equations with concentration-dependent diffusivities and moving boundaries are solved simultaneously in polymer-fixed coordinates. A constitutive relation is used to describe the effect of macromolecular relaxations on the rate of volume expansion as the polymer swells. The penetrant fractional uptake, solute fractional release, sample dimensions, swelling front position, and instantaneous swelling interface number are determined and related to the nature of the swelling process.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 36 (1988), S. 735-747 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A scaling law was developed for the diffusion coefficient of spheroidal and ellipsoidal solutes in nonporous, equilibrium-swollen hydrogels. The law relates the solute diffusion coefficient to the solute size, the gel mesh size, and the gel equilibrium volume degree of swelling. The law was verified by appropriate data of low and high molecular weight solute diffusion through hydrogels such as swollen networks of poly(vinyl alcohol), poly(2-hydroxyethyl methacrylate), cellulose, and others. An additional scaling law was developed which relates the rate of release of a small or large molecule from an equilibrium swollen hydrogel with time and with morphological characteristics of the polymeric network.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 24 (1986), S. 395-408 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A mathematical model was developed to describe diffusion of a penetrant and a solute in a swellable polymer slab. The model was applied to the case of a hydrophilic polymer loaded with a soluble bioactive agent, in which the penetrant (water) is sorbed and solute is desorbed. The model allows the incorporation of any appropriate form of the diffusion coefficients. A Fujita-type exponential dependence on penetrant concentration was chosen and shown to be adequate for prediction of a range of transport behavior. Dimensional changes in the sample were predicted by allowing each spatial increment to expand according to the amount of penetrant sorbed. During the initial period of release, the swelling was restricted to one dimension by the glassy core of the sample. At a later point in the process, the center of the sample had sorbed enough penetrant to plasticize it, and the sample relaxed to an isotropically swollen state; thereafter swelling was three-dimensional.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...