ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biogeographical province; Body length; Buoyant mass; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Coast and continental shelf; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; LATITUDE; LONGITUDE; Mass; Metabolic rate of oxygen; Metabolic rate of oxygen, per animal mass; Mollusca; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Perumytilus purpuratus; pH; Respiration; Salinity; Shell, mass; Single species; Site; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature; Temperature, water; Tropical; Type; Upwelling; Width  (1)
  • PANGAEA  (1)
  • 2020-2024  (1)
  • 2010-2014
Collection
Keywords
Publisher
  • PANGAEA  (1)
Years
  • 2020-2024  (1)
  • 2010-2014
Year
  • 1
    Publication Date: 2024-03-20
    Description: We assess the role of direct and indirect effects of coastal environmental drivers (including the parameters of the carbonate system) on energy expenditure (MR) and body mass (M) of the intertidal mussel, Perumytilus purpuratus, across 10 populations distributed over 2800 km along the Southern Eastern Pacific (SEP) coast. We find biogeographic and local variation in carbonate system variables mediates the effects of latitude and temperature on metabolic rate allometry along the SEP coast. Also, the fitted Piecewise Structural Equation models (PSEM) have greater predictive ability (conditional R2 = 0.95) relative to the allometric scaling model (R2 = 0.35). The largest standardized coefficients for MR and M were determined by the influence of temperature and latitude, followed by pCO2, pH, total alkalinity, and salinity. Thus, physiological diversity of P. purpuratus along the SEP coast emerges as the result of direct and indirect effects of biogeographic and local environmental variables.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biogeographical province; Body length; Buoyant mass; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Coast and continental shelf; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; LATITUDE; LONGITUDE; Mass; Metabolic rate of oxygen; Metabolic rate of oxygen, per animal mass; Mollusca; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Perumytilus purpuratus; pH; Respiration; Salinity; Shell, mass; Single species; Site; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature; Temperature, water; Tropical; Type; Upwelling; Width
    Type: Dataset
    Format: text/tab-separated-values, 9249 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...