ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (1)
  • Articles  (633)
  • Data  (20)
  • 2020-2024  (27)
  • 2010-2014  (607)
  • 1945-1949  (20)
Collection
Keywords
Language
Years
Year
Branch Library
Reading Room Location
  • 1
    Call number: PIK P 100-12-0301
    Description / Table of Contents: Contents: Key findings ; Summary for policy makers ; Technical summary ; 1. Energy primer ; 2. Energy, poverty, and development ; 3. Energy and environment ; 4. Energy and health ; 5. Energy and security ; 6. Energy and economy ; 7. Energy resources and potentials ; 8. Energy end-use: industry ; 9. Energy end-use: transport ; 10. Energy end-use: buildings ; 11. Renewable energy ; 12. Fossil energy ; 13. Carbon capture and storage ; 14. Nuclear energy ; 15. Energy supply systems ; 16. Transitions in energy systems ; 17. Energy pathways for sustainable development ; 18. Urban energy systems ; 19. Energy access for development ; 20. Land and water: linkages to bioenergy ; 21. Lifestyles, well-being and energy ; 22. Policies for energy system transformations: objectives and instruments ; 23. Policies for energy access ; 24. Policies for the Energy Technology Innovation System (ETIS) ; 25. Policies for capacity development ; Annex I. Acronyms, abbreviations and chemical symbols ; Annex II. Technical guidelines ; Annex III. Contributors to the Global Energy Assessment ; Annex IV. Reviewers of the Global Energy Assessment Machine generated contents note: Foreword; Preface; Key findings; Summary for policy makers; Technical summary; 1. Energy primer; 2. Energy, poverty, and development; 3. Energy and environment; 4. Energy and health; 5. Energy and security; 6. Energy and economy; 7. Energy resources and potentials; 8. Energy end-use: industry; 9. Energy end-use: transport; 10. Energy end-use: buildings; 11. Renewable energy; 12. Fossil energy; 13. Carbon capture and storage; 14. Nuclear energy; 15. Energy supply systems; 16. Transitions in energy systems; 17. Energy pathways for sustainable development; 18. Urban energy systems; 19. Energy access for development; 20. Land and water: linkages to bioenergy; 21. Lifestyles, well-being and energy; 22. Policies for energy system transformations: objectives and instruments; 23. Policies for energy access; 24. Policies for the Energy Technology Innovation System (ETIS); 25. Policies for capacity development; Annex I. Acronyms, abbreviations and chemical symbols; Annex II. Technical guidelines; Annex III. Contributors to the Global Energy Assessment; Annex IV. Reviewers of the Global Energy Assessment; Index.
    Type of Medium: Monograph available for loan
    Pages: XVIII, 1865 S. : Ill., graph. Darst., Kt.
    ISBN: 9781107005198 , 978-0-521-18293-5
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 53 (1949), S. 1138-1139 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 67 (1945), S. 1709-1711 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 70 (1948), S. 2001-2002 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 68 (1946), S. 1072-1076 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 21 (1949), S. 1022-1026 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 39 (1947), S. 766-774 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 41 (1949), S. 2286-2289 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-27
    Description: Biomass accumulation was assessed by subtracting phytoplankton mortality (due to microzooplankton) from phytoplankton growth rates. Rates of phytoplankton growth and microzooplankton grazing were assessed daily with the dilution technique (Landry and Hassett 1982; doi:10.1007/BF00397668), following the two treatment approach (Landry, Haas et al. 1984 doi:10.3354/meps016127), at six depths within the euphotic zone. We implemented this mini-dilution approach to generate vertically resolved growth and grazing rates, but also conducted a full dilution experiment on the last day of each of the cycles (n = 5) to test linearity assumptions of the method. Seawater collected with the Niskin bottles attached to the CTD rosette at 02:00 h was used to fill a pair of 2.2-L polycarbonate bottles (100%, B and C) while a third bottle (A) was filled with 25% whole seawater diluted with 0.2-µm filtered seawater obtained immediately before by gravity filtration using an Acropak filter cartridge (Pall) directly from the same Niskin bottle. Nutrients (final concentrations in 2.2L bottles; nitrate 0.18 μM, ammonium 4.16 μM, phosphate 15.08, silicate 44.2 μM, and vitamins) were added to bottles A and B in order to ensure the assumption that the same phytoplankton intrinsic growth rate was occurring in WSW and FSW bottles despite dilution (Gutiérrez‐Rodríguez, Safi et al. 2020 doi:10.1029/2019JC015550). Bottles were then incubated in situ at the same six depths of collection using a drifting array. Rates were calculated from changes in Chl a concentration and picophytoplankton abundance between the beginning and end of the experiment assuming exponential growth of phytoplankton. Microzooplankton grazing rate was estimated from: µ = (kA – kB)/(1-x) where kA and kB are the observed net rates of change of chl a in bottles A and B, respectively, and x is the fraction of whole seawater in the diluted bottle A (0.25). Phytoplankton growth rate was estimated from µ =m+kB. Photoacclimation effects were corrected from changes in cell chl a fluorescence estimated by flow cytometry during incubations as a proxy of cell chl a content (Gutierrez-Rodriguez, Latasa et al. 2010 doi:10.1016/j.dsr.2009.12.013). These include estimating the photoacclimation index (Phi) from changes in FL3: FSC and calculating an average value from Phi index obtained for pico- and nanoeukaryotic populations weighted by their biomass contribution. Accumulation was calculated by subtracting the C-based estimates of microzooplankton grazing (from the dilution experiments) from the 14C-based NPP.
    Keywords: 14C in-situ incubation; carbon export; Chatham Rise, east of New Zealand; Cycle; Cycle description; Date/Time of event; Date/Time of event 2; DEPTH, water; Event label; Latitude of event; Latitude of event 2; Longitude of event; Longitude of event 2; MULT; Multiple investigations; Net primary production of carbon; Net primary production of carbon, standard deviation; Salp Particle expOrt and Ocean Production; Salp Particle expOrt and Ocean Production (SalpPOOP); SalpPOOP; salps; TAN1810; TAN1810_1; TAN1810_2; TAN1810_3; TAN1810_4; TAN1810_5; TAN1810_cycle_1; TAN1810_cycle_2; TAN1810_cycle_3; TAN1810_cycle_4; TAN1810_cycle_5; Tangaroa
    Type: Dataset
    Format: text/tab-separated-values, 111 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-25
    Description: Salps were collected using double oblique Bongo tows, with 0.7m diameter frames equipped with 202 µm nets, General Oceanics flow meters, and an RBR temperature depth recorder. Salp specimens (typically 10) from each tow had their guts excised, and chl a and phaeopigments gut contents were measured. A power function was used to fit the size-specific Gpig (chl a + phaeo) contents for each tow, allowing the estimation of Gpig for each size bin per tow, and this was multiplied by the abundance in each size bin. Gut passage time (GPT) was calculated using a modified equation, based on (von Harbou, Dubischar et al. 2011 doi:10.1007/s00227-011-1709-4) where GPT(h) = 2.607*ln(OAL, mm) - 2.6. Grazing was estimated as: G (h-1) = Gpig /GPT, and scaled using a Q10=2. Daily salp grazing rates were obtained by assuming 14 h of day and 10 h of night, coincident with the times and latitudes at which we sampled these communities during the Salp Particle expOrt and Ocean Production (SalpPOOP) campaign. Cycle estimates were calculated by first averaging all day and all night tows separately, and then adding the two estimates. Fecal pellet production was calculated by assuming an egestion efficiency of 0.36 (Huntley, Sykes et al. 1989 doi:10.1007/BF00238291, Pakhomov 2004 doi:10.1016/j.dsr2.2001.03.001, Pakhomov and Froneman 2004 10.1016/j.dsr2.2000.11.002) and converting to carbon values using C:Chl ratios from the phytoplankton growth and grazing experiments combined with NPP, and reported in mg C m-2 d-1. Data is reported by size after binning in 5mm size bins (ranging 1-135mm), and for oozooids and blastozooids separately.
    Keywords: BONGO; Bongo net; Chatham Rise, east of New Zealand; Cycle; Cycle description; Date/Time local; Date/Time of event; Date/Time of event 2; Day; DEPTH, water; Event label; fecal pellet; Latitude of event; Longitude of event; Number; Salpa thompsoni, blastozooid, fecal pellet production as carbon; Salpa thompsoni, oozooid, fecal pellet production as carbon; Salp Particle expOrt and Ocean Production; Salp Particle expOrt and Ocean Production (SalpPOOP); SalpPOOP; salps; Station label; TAN1810; TAN1810_004; TAN1810_008; TAN1810_013; TAN1810_018; TAN1810_023; TAN1810_027; TAN1810_038; TAN1810_043; TAN1810_054; TAN1810_056; TAN1810_057; TAN1810_058; TAN1810_068; TAN1810_070; TAN1810_072; TAN1810_074; TAN1810_089; TAN1810_092; TAN1810_094; TAN1810_097; TAN1810_099; TAN1810_1_004; TAN1810_1_008; TAN1810_1_013; TAN1810_1_018; TAN1810_1_023; TAN1810_1_027; TAN1810_1_038; TAN1810_1_043; TAN1810_1_054; TAN1810_1_056; TAN1810_1_057; TAN1810_1_058; TAN1810_1_068; TAN1810_1_070; TAN1810_1_072; TAN1810_1_074; TAN1810_1_089; TAN1810_1_092; TAN1810_1_094; TAN1810_1_097; TAN1810_1_099; TAN1810_1_106; TAN1810_1_107; TAN1810_106; TAN1810_107; TAN1810_127; TAN1810_135; TAN1810_140; TAN1810_142; TAN1810_153; TAN1810_160; TAN1810_163; TAN1810_165; TAN1810_167; TAN1810_173; TAN1810_175; TAN1810_178; TAN1810_186; TAN1810_2_127; TAN1810_2_135; TAN1810_2_140; TAN1810_2_142; TAN1810_2_153; TAN1810_2_160; TAN1810_2_163; TAN1810_2_165; TAN1810_2_167; TAN1810_2_173; TAN1810_2_175; TAN1810_2_178; TAN1810_2_186; TAN1810_268; TAN1810_271; TAN1810_277; TAN1810_290; TAN1810_292; TAN1810_296; TAN1810_299; TAN1810_301; TAN1810_303; TAN1810_304; TAN1810_306; TAN1810_313; TAN1810_316; TAN1810_4_268; TAN1810_4_271; TAN1810_4_277; TAN1810_4_290; TAN1810_4_292; TAN1810_4_296; TAN1810_4_299; TAN1810_4_301; TAN1810_4_303; TAN1810_4_304; TAN1810_4_306; TAN1810_4_313; TAN1810_4_316; Tangaroa; Water volume, filtered
    Type: Dataset
    Format: text/tab-separated-values, 2597 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...