ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-01
    Description: Context. The environment of supernova remnants (SNRs) is a key factor in their evolution, particularly at later stages of their existence. Mixed-morphology (MM) SNRs have a peculiar centre-filled X-ray shape that remains enigmatic. It is often assumed that they evolve in very dense environments, and that the X-ray morphology is due to interactions between the SNRs and their surroundings. Aims. We aim to determine whether VRO 42.05.01 is embedded in, and interacting with, a dense molecular environment. We also aim to understand the multi-wavelength emission from the environment of this SNR, and whether the interstellar material can be responsible for the the MM nature of the source, and for its strange radio and optical shape. Methods. We used the IRAM telescope in Pico Veleta, Spain, to search for signs of interaction between the SNR and neighbouring molecular clouds. We observed a region of 26′ × 14′ towards the west of VRO 42.05.01 and a region of 8′ × 4′ towards the north of the remnant in the 12CO J = 1−0, 13CO J = 1−0, and 12CO J = 2−1 transitions with the EMIR receiver. We made maps of the properties of the observed molecular clouds (peak temperatures, central velocities, velocity dispersions), as well as maps of column density along the line of sight, and ratio of the 12CO J = 2−1 to 12CO J = 1−0 transitions. We also analyse archival optical, infrared, and radio spectroscopic data for other hints on the nature of the medium. Results. We do not find conclusive physical proof that the SNR is interacting with the few, clumpy molecular clouds that surround it in the region of our observations, although there is some suggestion of such interaction (in a region outside our map) from infrared emission. We find that there is a velocity gradient in one of the molecular clouds that is consistent with a stellar wind blown by a 12−14 M⊙ progenitor star. We reassess the literature distance to VRO 42.05.01, and propose that it has a local standard of rest velocity of − 6 km s−1, and that it is located 1.0 ± 0.4 kpc away (the earlier distance value was 4.5 ± 1.5 kpc). We find that a dust sheet intersects VRO 42.05.01 and is possibly related to its double shell-shaped morphology.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Context. Mixed-morphology supernova remnants (MM SNRs) are a mysterious class of objects that display thermal X-ray emission within their radio shell. They are an older class of SNRs, and as such are profoundly affected by the environment into which they evolve. VRO 42.05.01 is a MM SNR of puzzling morphology in the direction of the Galactic anticentre. Aims. Low-frequency radio observations of supernova remnants are sensitive to synchrotron electrons accelerated in the shock front. We aim to compare the low-frequency emission to higher frequency observations to understand the environmental and shock acceleration conditions that have given rise to the observed properties of this source. Methods. We present a LOFAR High Band Antenna map centred at 143 MHz of the region of the Galactic plane centred at l = 166 ° ,  b = 3.5° at 143 MHz, with a resolution of 148″ and an rms noise of 4.4 mJy bm−1. Our map is sensitive to scales as large as 6°. We compared the LOw Frequency ARay (LOFAR) observations to archival higher frequency radio, infrared, and optical data to study the emission properties of the source in different spectral regimes. We did this both for the SNR and for OA 184, an H II region within our field of view. Results. We find that the radio spectral index of VRO 42.05.01 increases at low radio frequencies; i.e. the LOFAR flux is higher than expected from the measured spectral index value at higher radio frequencies. This observed curvature in the low-frequency end of the radio spectrum occurs primarily in the brightest regions of the source, while the fainter regions present a roughly constant power-law behaviour between 143 MHz and 2695 MHz. We favour an explanation for this steepening whereby radiative shocks have high compression ratios and electrons of different energies probe different length scales across the shocks, therefore sampling regions of different compression ratios.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-27
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...