ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (220)
  • American Chemical Society  (91)
  • Springer Nature  (86)
  • Springer  (67)
  • Seismological Society of America  (17)
  • American Meteorological Society  (16)
  • Amsterdam : Elsevier
  • Blackwell Science, Ltd
  • 2020-2024  (5)
  • 2015-2019  (320)
  • 2000-2004  (174)
Collection
Publisher
Language
Years
Year
  • 1
    Call number: ILP/M 06.0353
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: vi, 271 S. : Ill., graph. Darst.
    Series Statement: [Publication of the International Lithosphere Programme] 381,1-4 : special issue
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer Nature | Palgrave Macmillan
    Publication Date: 2024-03-29
    Description: This Open access book brings a cultural lens, and a distinctive analytical framework, to the problem of transitioning to a sustainable, low-carbon future. The world faces a seemingly impossible hurdle – to radically alter long-established social, economic and technological systems in order to live within the biophysical limits of the globe, while ensuring a just and enduring transition. The overarching premise of this book is that this cannot be achieved without widespread cultural change. ‘We need a change in culture’ is often used rhetorically, but what does this really mean? Stephenson starts by exploring culture’s elusiveness, describing its divergent interpretations before identifying core features of culture that are common across most definitions. These characteristics form the core of the cultures framework, an extensively tested approach to studying the links between culture and sustainability outcomes. The framework makes culture an accessible concept which can be analytically applied to almost any sustainability problem. Using many examples from around the world, Stephenson illustrates how cultural stability, cultural flexibility and cultural transformation all have a part to play in the sustainability transition. She guides the reader in the use of the cultures framework for policy development and to underpin research undertaken by individuals or by multi-disciplinary teams. Clearly and engagingly written, Culture and Sustainability is essential reading for academics, students, policy makers and indeed anyone interested in a sustainable future.
    Keywords: sustainable transitions ; low carbon transition ; energy transition ; sustainability ; sustainable development goals ; culture and sustainability ; energy cultures ; culture framework ; socio-technical transitions ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPQ Central / national / federal government::JPQB Central / national / federal government policies ; thema EDItEUR::J Society and Social Sciences::JH Sociology and anthropology::JHB Sociology ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RG Geography ; thema EDItEUR::G Reference, Information and Interdisciplinary subjects::GT Interdisciplinary studies::GTP Development studies ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RN The environment::RNU Sustainability ; thema EDItEUR::J Society and Social Sciences::JB Society and culture: general::JBS Social groups, communities and identities::JBSR Social groups: religious groups and communities
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publication Date: 2024-05-29
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford,UK : Blackwell Science, Ltd
    Molecular microbiology 46 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Two-component and phosphorelay signal transduction systems are believed to function as environ-mental sensors that programme gene expression to the composition of the ecological niche in which a microbe normally resides. The question of how evolutionarily related bacteria that occupy different environments change their signal transduction pathways to adapt to such environments was asked of the sporulation phosphorelay of Bacillus subtilis, Bacillus halodurans, Bacillus anthracis and Bacillus stearothermophilus. Comparison of the primary amino acid sequence of phosphorelay proteins with the known structural and interactive properties of the B. subtilis proteins revealed that the amino acid residues of interaction surfaces between phosphorelay proteins and between a phosphorelay protein and DNA resist evolutionary change. The absolute conservation of interaction surfaces allowed the identification of sporulation sensor kinases in B. halodurans, B. anthracis and B. stearothermophilus. In these sensor kinases, the signal-sensing domains are vastly different in size and subdomain composition, with little apparent conservation between species, whereas the catalytic domains of these sensor kinases retain the high level of homology observed for the other phosphorelay proteins. Adaptation to new environments appears to result in rapid evolution of signalling domains to maximize environmental impact while maintaining identical protein–protein and protein–DNA contacts in the entire phosphorelay. In Clostridial genomes, only the Spo0A protein was found, suggesting that the anaerobic relatives of the Bacilli do not use a phosphorelay and phosphorylate Spo0A directly with sensor kinases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 24 (2000), S. 267-274 
    ISSN: 1476-5535
    Keywords: Keywords: vitamins; activated sludge; industrial wastewater; porous pots; Amtox™
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The process performance and metabolic rates of samples of activated sludge dosed with vitamin supplements have been compared. After initial screening, four vitamins and two metals as single supplements and in pairs, were dosed continuously into the mixed liquor of an activated sludge simulation. Toxicity, oxygen demand removal, respiration rates and suspended solids were measured to monitor the effect on process efficiency. It was confirmed experimentally that an industrial wastewater stream did not contain a sufficient supply of micronutrients for efficient biological treatment. This was concluded from the observation that control sludge batches (receiving no supplements) averaged chemical oxygen demand removal efficiency of 58%. Dosing micronutrients into the mixed liquor produced removal efficiencies of up to 69%. Some of the supplements increased the respiration rate of the sludge while some decreased it, indicating a range of stimulatory and inhibitory effects. Complex interactions between micronutrients that were dosed simultaneously were evident. Several positive effects led to the conclusion that micronutrients have the potential to optimise process performance of activated sludge plants treating industrial wastewater. The addition of phosphorus/niacin and molybdenum/lactoflavin removed wastewater components that were toxic to nitrifiers as indicated through toxicity testing, thus protecting downstream nitrification/denitrification treatment processes. Journal of Industrial Microbiology & Biotechnology (2000) 24, 267–274.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-9761
    Keywords: gap model ; gradient analysis ; landscape pattern ; sensitivity analysis ; Sierra Nevada ; spatial scale ; water balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches to gradient analysis, and bear strongly on our ability to use correlative approaches in assessing the potential responses of montane forests to anthropogenic climatic change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0495
    Keywords: Key words Karst terranes ; Electrical resistivity tomography ; Sinkholes ; Pinnacles and cutters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Because of the irregular distribution of pinnacles and cutters on the bedrock surface, uncertainties arise when "hit-or-miss" borehole drilling is used to locate potential collapse sites. A high-resolution geophysical technique capable of depicting the details of the bedrock surface is essential for guiding the drilling program. Dipole-dipole electrical resistivity tomography (ERT) was used to map the bedrock surface at a site in southern Indiana where limestone is covered by about 9 m of clayey soils. Forty-nine transects were conducted over an area of approximately 42,037 m2. The electrode spacing was 3 m. The length of the transects varied from 81 to 249 m. The tomographs were interpreted with the aid of soil borings. The repeatability of ERT was evaluated by comparing the rock surface elevations interpreted from pairs of transects where they crossed each other. The average difference was 2.4 m, with a maximum of 10 m. The discrepancy between interpreted bedrock-surface elevations for a transect intersection may be caused by variations in the subsurface geology normal to the transect. Averaging the elevation data interpreted from different transects improved the ERT results. A bedrock surface map was generated using only the averaged elevation data at the transect junctions. The accuracy of the map was further evaluated using data from four exploratory boreholes. The average difference between interpreted and actual bedrock surface-elevations was less than 0.4 m. The map shows two large troughs in the limestone surface: one coinciding with an existing sinkhole basin, while the other is in alignment with a small topographic valley. Because sinkholes were observed at the same elevation interval in similar valleys in the vicinity, the delineated trough may have implications for future land use at the site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 210 (2000), S. 157-161 
    ISSN: 1432-041X
    Keywords: Key words Swallow ; bicoid ; Drosophila ; mRNA localization ; Oogenesis ; Embryogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We analyzed a functional homologue of the swallow gene from Drosophila pseudoobscura. The swallow gene of D. melanogaster plays an essential role in localizing bicoid mRNA in oocytes, and swallow mutant embryos show anterior pattern defects that result from the lack of localization of the bicoid morphogen. The pseudoobscura homologue rescues the function of swallow mutants when introduced into the genome of D. melanogaster, and its expression is similar to that of the melanogaster gene. The predicted pseudoobscura and melanogaster proteins are 49% identical and 69% conserved. The coiled-coil domain previously identified in the melanogaster swallow protein is strongly conserved in the pseudoobscura homologue, but the weak similarity of the melanogaster swallow protein to the RNP class of RNA-binding proteins is not conserved in the pseudoobscura homologue. These and other observations suggest a structural role for swallow in localizing bicoid mRNA, perhaps as part of the egg cytoskeleton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 35 (2000), S. 1205-1211 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Structural properties such as flexural moduli and strength have been measured for a range of porous alumina specimens of different initial powder sizes and final porosities, sintered using the capsule-free hot isostatic pressing method. This processing method produces a porous body in which the closed porosity is negligible. The relationship of these structural properties to total porosity has been investigated. The results indicate that both a power and an exponential function could adequately describe the porosity dependence of flexural strength. The strength values obtained were test method dependent, and were significantly lower for specimens with sintering aids. A power law model based on a critical porosity, as proposed by Phani, gave the best fit for the modulus measurement data. No dependence of mechanical properties on particle size was observed. The strength measurement results did not appear to support suggestions that better strength could be obtained by the capsule-free hot isostatic pressing method than conventional sintering, as reported elsewhere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 21 (2000), S. 481-489 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Mechanisms of fatigue were studied in single muscle fibres of the cane toad (Bufo marinus) in which force, intracellular calcium ([Ca2+]i), [Mg2+]i, glycogen and the rapidly releasable Ca2+ from the sarcoplasmic reticulum (SR) were measured. Fatigue was produced by repeated tetani continued until force had fallen to 50%. Two patterns of fatigue in the absence of glucose were studied. In the first fatigue run force fell to 50% in 8–10 min. Fatigue runs were then repeated until force fell to 50% in 〈3 min in the final fatigue run. Addition of extracellular glucose after the final fatigue run prolonged a subsequent fatigue run. In the first fatigue run peak tetanic [Ca2+]i initially increased and then declined and at the time when force had fallen to 50% tetanic [Ca2+]i was 54 ± 5% of initial value. In the final fatigue run force and peak tetanic [Ca2+]i declined more rapidly but to the same level as in first fatigue runs. At the end of the first fatigue run, the rapidly releasable SR Ca2+ store fell to 46 ± 6% of the pre-fatigue value. At the end of the final fatigue run the rapidly releasable SR Ca2+ store was 109 ± 16% of the pre-fatigue value. In unstimulated fibres the nonwashable glycogen content was 176 ± 30 mmol glycosyl units/l fibre. After one fatigue run the glycogen content was 117 ± 17 mmol glycosyl units/l fibre; at the end of the final fatigue run the glycogen content was reduced to 85 ± 9 mmol glycosyl units/l fibre. [Mg2+]i did not change significantly at the end of fatigue in either the first or the final fatigue run suggesting that globally-averaged ATP does not decline substantially in either pattern of fatigue. These results suggest that different mechanisms are involved in the decline of tetanic [Ca2+]i in first compared to final fatigue runs. The SR Ca2+ store is reduced in first fatigue runs; this is not the case for the final fatigue run which is associated with a decline in glycogen and possibly related to either a non-metabolic effect of glycogen or a spatially-localised metabolic decline.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...