ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • Academic Press  (1)
  • Springer  (1)
  • 2020-2024
  • 2015-2019  (1)
  • 2010-2014  (1)
  • 1940-1944
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  In: Ocean-Atmosphere Interactions of Gases and Particles. , ed. by Liss, P. S. and Johnson, M. T. Springer, Berlin [u.a.], pp. 247-306. ISBN 978-3-642-25642-4
    Publication Date: 2016-03-30
    Description: Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-03
    Description: Vibrios are rod-shaped bacteria, and are a functionally and phylogenetically diverse grouping of Gram-negative microbes found widely in aquatic, estuarine, and marine habitats. Approximately a dozen Vibrio species are known to cause disease in humans, and infection is usually initiated from exposure to seawater or consumption of raw or undercooked seafood. Although a wide range of different bacterial species contain multiple chromosomes, Vibrio species are noted in that they possess two circular chromosomes. Bacteria of the genus Vibrio are commonly found in tropical and temperate coastal and estuarine waters. Vibrios are among the most common bacteria that inhabit surface waters throughout the world and are responsible for a number of severe infections both in humans and animals. Vibriosis is characterized by diarrhea, primary septicemia, wound infections, or other extraintestinal infections. Select strains of V. cholerae, V. parahaemolyticus, V. vulnificus, and V. alginolyticus are perhaps considered the most serious human pathogens from this genus. Two Vibrio species in particular, V. vulnificus and V. parahaemolyticus are significant foodborne human pathogens, and most frequently infections occur via the consumption of naturally contaminated shellfish produce. It is worth noting that these pathogens represent a significant cause of morbidity and mortality. For example, an estimated 80,000 people contract Vibrio infections each year in the United States, with a sizeable fraction originating from foodborne sources, such as consumption of raw or undercooked seafood produce. Recent data from the Centers for Disease Control and Prevention (CDC) in the United States have indicated that there has been a significant increase in reported infections associated with vibrios, particularly in the last two decades. The annual incidence of reported vibriosis per 100,000 population has increased significantly in the United States from 1996 to 2010, highlighting the importance of these pathogens from a clinical context. Calculations based upon probable incidence of vibriosis have estimated that V. vulnificus and V. parahaemolyticus are the first and third most costly marine-borne pathogens, costing $233 and $20 million, respectively. From a foodborne perspective V. vulnificus and V. parahaemolyticus represent the major pathogens from the Vibrio genus in terms of clinical impact and relevance, and as such this chapter is mostly concerned with these species. These taxa do not sustain prolonged presence in clinical or agricultural settings, where it would likely undergo human-induced selection for antibiotic resistance. As such, these bacteria represent a particularly interesting group of pathogens to study antibiotic resistance, as they provide a “snapshot” of resistance presumably acquired from environmental rather than clinical settings. Despite their public-health significance, strains of V. parahaemolyticus and V. vulnificus have not been extensively monitored for antimicrobial resistance, in contrast to enteric pathogens such as Salmonella or Campylobacter. Given their increasing incidence, global distribution, and severity of disease progression (especially V. vulnificus) it is critical to gain a better understanding of the antimicrobial susceptibility patterns of V. vulnificus and V. parahaemolyticus originating from the environment (Shaw et al., 2014). Data from such sources is invaluable, particularly from routine antimicrobial screening of large numbers of environmental and clinical Vibrio strains as it can provide effective baseline data for treatment purposes.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...