ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-07
    Description: While thousands of environmental metagenomes have been mined for the presence of novel biosynthetic gene clusters, such computational predictions do not provide evidence of their in vivo biosynthetic functionality. Using fluorescent in situ enzyme assay targeting carrier proteins common to polyketide (PKS) and nonribosomal peptide synthetases (NRPS), we applied fluorescence-activated cell sorting to tunicate microbiome to enrich for microbes with active secondary metabolic capabilities. Single-cell genomics uncovered the genetic basis for a wide biosynthetic diversity in the enzyme-active cells and revealed a member of marine Oceanospirillales harboring a novel NRPS gene cluster with high similarity to phylogenetically distant marine and terrestrial bacteria. Interestingly, this synthase belongs to a larger class of siderophore biosynthetic gene clusters commonly associated with pestilence and disease. This demonstrates activity-guided single-cell genomics as a tool to guide novel biosynthetic discovery.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Leibniz-Institut für Ostseeforschung Warnemünde
    Publication Date: 2022-03-22
    Description: FS MARIA S. MERIAN Fahrt MSM105 11.01.2022 – 23.02.2022 Walvis Bay – Mindelo BUSUC II Das Benguela-System im Klimawandel - Auswirkungen der Variabilität des physikalischen Antriebs auf den Kohlenstoff- und Sauerstoffhaushalt 5. Wochenbericht 07. - 13.02.2022
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-28
    Description: The transit of RV SONNE from Las Palmas (departure: 11.12.2021) to Guayaquil, Ecuador (arrival: 11.01.2022) is directly related to the international collaborative project SO287-CONNECT of GEOMAR in cooperation with Hereon and the University of Bremen, supported by the German Federal Ministry of Education and Research (BMBF) between October 15 2021 and January 15 2024. The research expedition was conducted to decipher the coupling of biogeochemical and ecological processes and their influence on atmospheric chemistry along the transport pathway of water from the upwelling zones off Africa into the Sargasso Sea and further to the Caribbean and the equatorial Pacific. Nutrient-rich water rises from the deep and promotes the growth of plant and animal microorganisms, and fish at the ocean surface off West Africa. The North Equatorial Current water carries the water from the upwelling, which contains large amounts of organic material across the Atlantic to the Caribbean, supporting bacterial activity along the way. But how the nutritious remnants of algae and other substances are processed on their long journey, biochemically transformed, decomposed into nutrients and respired to carbon dioxide, has so far only been partially investigated. Air, seawater and particles were sampled in order to provide new details about the large cycles of carbon and nitrogen, but also of many other elements such as oxygen, iodine, bromine and sulfur. Inorganic and organic bromine and iodine compounds are generally emitted naturally from the ocean into the atmosphere, promote cloud formation and affect climate, and some even reach the stratosphere where they contribute to ozone depletion. We measured how much of these compounds are released from the ocean, and at what locations and how they are transformed in the ocean and in the atmosphere. Sargassum algae, which have become a nuisance on beaches in the western and eastern Atlantic, support life and contribute to carbon cycling in the middle of the Atlantic, the Sargasso Sea and in the Caribbean, while their contribution to halogen cycling and marine bromine and iodine emissions was previously unknown. We investigated the influence of various natural parameters such as temperature and solar radiation on the biogeochemical transformation processes in order to understand the influence of climate change on these processes in incubation experiments with seawater and algae. We investigated how anthropogenic signals such as shipping traffic influence the nitrogen and sulphur cycle in the ocean, as well as the impact of nitrogen oxides from ship exhaust and sulphurous, acidic and dirty water from purification systems on organisms and biochemical processes. Plastic debris was sampled from the surface waters to investigate its contribution to global biogeochemical transformation processes. The working hypotheses of the research program were:  Bioavailability of dissolved organic carbon in surface waters decreases along the productivity gradient and transport pathway from the Eastern to the Western Tropical North Atlantic.  Nutrient gradients from East to West constrain the microbial utilization of organic matter- contributing to an accumulation of C-rich organic matter due to a) limited mineralization and b) enhanced exudation- also leading to gel-like particles accumulation in the western tropical North Atlantic and Sargasso Sea.  Tropospheric and stratospheric ozone are strongly impacted by biogeochemical and ecological processes occurring around and in the NA gyre system related to marine iodine and bromine cycles.  The long-range transport of natural and anthropogenic organic matter in water and of gases and aerosols in the air impact carbon-export, biogeochemical cycles in the water column, and the release of gases and particles from the ocean significantly. 4 SONNE -Berichte, SO287, Las Palmas - Guayaquil, 11.12.2021 - 11.01.202 The data and samples obtained specifically target carbon, nutrient and halogen cycling, the composition of phytoplankton, bacteria, the transport and sequestration of macro algae and the air-sea exchange processes of climate relevant gases and aerosols. The influence of ecological and transport processes, as well as anthropogenic impacts on the North Atlantic gyre system, specifically in the Sargasso Sea and the influence of ship emissions throughout the Atlantic towards the west and into the Pacific will be investigated with the data.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2022-12-16
    Description: We synthesize 10 topics within climate research where there have been significant advances or emerging scientific consensus since January 2021. The selection of these insights was based on input from an international open call with broad disciplinary scope. Findings concern: (1) new aspects of soft and hard limits to adaptation; (2) the emergence of regional vulnerability hotspots from climate impacts and human vulnerability; (3) new threats on the climate–health horizon – some involving plants and animals; (4) climate (im)mobility and the need for anticipatory action; (5) security and climate; (6) sustainable land management as a prerequisite to land-based solutions; (7) sustainable finance practices in the private sector and the need for political guidance; (8) the urgent planetary imperative for addressing losses and damages; (9) inclusive societal choices for climate-resilient development and (10) how to overcome barriers to accelerate mitigation and limit global warming to below 2°C.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-04
    Description: Attenuation of trace organic compounds (TrOCs) in a river occurs to a large extent in its hyporheic zone. A major part of the attenuation of polar TrOCs is of microbial origin. As microbial activity depends on temperature and redox conditions, seasonal differences in TrOC attenuation are likely. We investigated TrOC attenuation at a river influenced by treated wastewater during two sampling campaigns, one in summer and one in winter. In addition to redox conditions and temperature, we also determined residence times of porewater in sediment using three methods: (a) non‐parametric deconvolution of electrical conductivity time series, (b) the model VFLUX 2.0 based on temperature time series (only summer), and (c) applying Darcy's law to differences in hydraulic heads (only summer). Contrary to our expectations, we found higher attenuation for 12 out of 18 TrOCs in winter, while three TrOCs were better attenuated in summer. Sediment conditions varied between seasons as more of the top sandy layer with a higher hydraulic permeability accumulated on the river bed in summer. As a result, residence times in the sediment were shorter in summer. In winter, longer residence times, lower temperatures, and a steeper oxygen gradient in sediment coincided with higher TrOC attenuation. Further research is needed to understand our unexpected findings and underlying mechanisms.
    Description: Key Points: The attenuation of 12 out of 18 trace organic compounds (TrOCs) in the hyporheic zone was higher in winter while three TrOCs were attenuated better in summer. Residence times in sediment were longer and more diverse in winter. The extent of the oxic sediment was similar between seasons but the gradient from the oxic to anoxic zone was steeper in winter.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: EC | H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska‐Curie Actions (MSCA) http://dx.doi.org/10.13039/100010665
    Description: University of Western Australia ‐ University Postgraduate Award
    Description: Australian Government Research Training Program Scholarship
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.18728/igb-fred-578.0
    Keywords: ddc:628.162
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-04-04
    Description: The influence of the exceptionally strong typhoon Mangkhut on the availability of nutrients and changes in primary production were studied in the northern South China Sea in September 2018. A tight station grid was sampled to analyze major nutrients, chlorophyll_a, particulate and dissolved organic carbon and nitrogen. Based on interpolated profiles, nutrients and organic matter budgets were determined for the upper 100 m of the water column prior to and after Mangkhut's passage. An upper layer of 100 m was found to reflect the important changes by the typhoon. Considerable differences between the on‐shelf, shelf edge and the deep‐sea stations were determined. Nitrate and phosphate increased by about 80% and 36% on the shelf, respectively, and both by almost 40% at the shelf edge. The open deep‐sea part of the study area reflects some deviating results that may be caused by just displacement of water or by mixing water of different origin. However, right on Mangkhut's track on the shelf even contact between surface waters and bottom waters was enabled, increasing phosphate and silicate, but declining nitrate. The inventory of organic carbon of the upper 100 m of the study area (138,000 km2) of 92 Gmol had increased within a few days after the typhoon's passage by 5 Gmol on the shelf and about 2 Gmol in the shelf edge area. Chlorophyll_a doubled during our stay and might have reached a factor of 3 increase in the subsequent time by nitrate supply and excess phosphate.
    Description: Plain Language Summary: The influence of the super typhoon Mangkhut on the waters of the northern South China Sea was studied in September 2018. Nutrients and organic material were measured on 63 stations from the Chinese research vessel HAI YANG DI ZHI SHI HAO. Amounts of nutrients and biogenic matter were calculated for the on‐shelf, shelf edge and deep‐sea stations for the pre‐ and post‐Mangkhut period. An important finding was that the stations of the different areas, on‐shelf, shelf edge and the deep‐sea appeared to be differently impacted by Mangkhut. Even differences between the stations right on its track and in the other parts of the study area were found. In general, nutrients were supplied in enormous amounts and caused immediate algae growth. Moreover, enough nutrients were supplied to support algae growth for a couple of weeks. In summary, it was found that Manghut's upper water column mixing and shifting caused an almost tripling of primary production compared to the normal situation.
    Description: Key Points: The typhoon Mangkhut clearly impacted the water column differently on the continental shelf, at the shelf edge and in the deep sea. On Mangkhut's track a maximum nitrate supply of 162 mmol m−2 was caused by induced upwelling at the shelf edge. The chlorophyll inventory of 2.8 Gg was almost tripled by contributing 4.7 Gg estimated from an additional nutrient supply.
    Description: Federal Ministry of Education and Research, BMBF http://dx.doi.org/10.13039/501100002347
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: https://doi.pangaea.de/10.1594/PANGAEA.936352
    Description: https://doi.pangaea.de/10.1594/PANGAEA.936096
    Keywords: ddc:577.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-04-04
    Description: Microbial organic matter decomposition is a critical ecosystem function, which can be negatively affected by chemicals. Although the majority of organic matter is stored in sediments, the impact of chemicals has exclusively been studied in benthic systems. To address this knowledge gap, we assessed the impact of a fungicide mixture at three concentrations on the decomposition of black alder leaves in the benthic and hyporheic zone. We targeted two sediment treatments characterized by fine and coarse grain sizes (1–2 vs. 2–4 mm). Besides microbial communities' functioning (i.e., decomposition), we determined their structure through microbial biomass estimates and community composition. In absence of fungicides, leaf decomposition, microbial biomass estimates and fungal sporulation were lower in the hyporheic zone, while the importance of bacteria was elevated. Leaf decomposition was reduced (40%) under fungicide exposure in fine sediment with an effect size more than twice as high as in the benthic zone (15%). These differences are likely triggered by the lower hydraulic conductivity in the hyporheic zone influencing microbial dispersal as well as oxygen and nutrient fluxes. Since insights from the benthic zone are not easily transferable, these results indicate that the hyporheic zone requires a higher recognition with regard to ecotoxicological effects on organic matter decomposition.
    Description: German Research Foundation, Project AQUA‐REG http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:550.724 ; ddc:579
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beam, J. P., Becraft, E. D., Brown, J. M., Schulz, F., Jarett, J. K., Bezuidt, O., Poulton, N. J., Clark, K., Dunfield, P. F., Ravin, N. V., Spear, J. R., Hedlund, B. P., Kormas, K. A., Sievert, S. M., Elshahed, M. S., Barton, H. A., Stott, M. B., Eisen, J. A., Moser, D. P., Onstott, T. C., Woyke, T., & Stepanauskas, R. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Frontiers in Microbiology, 11, (2020): 1848, doi:10.3389/fmicb.2020.01848.
    Description: Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell–cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.
    Description: This work was funded by the USA National Science Foundation grants 1441717, 1826734, and 1335810 (to RS); and 1460861 (REU site at Bigelow Laboratory for Ocean Sciences). RS was also supported by the Simons Foundation grant 510023. TW, FS, and JJ were funded by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231. NR group was funded by the Russian Science Foundation (grant 19-14-00245). SS was funded by USA National Science Foundation grants OCE-0452333 and OCE-1136727. BH was funded by NASA Exobiology grant 80NSSC17K0548.
    Keywords: Bacteria ; Archaea ; evolution ; genomics fermentation ; respiration ; oxidoreductases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-29
    Description: Four previously identified patterns of meso‐scale cloud organization in the trades — called Sugar, Gravel, Flowers, and Fish — are studied using long‐term records of ground‐based measurements, satellite observations and reanalyzes. A deep neural network trained to detect these patterns is applied to satellite imagery to identify periods during which a particular pattern is observed over the Barbados Cloud Observatory. Surface‐based remote sensing at the observatory is composited and shows that the patterns can be distinguished by differences in cloud geometry. Variations in total cloudiness among the patterns are dominated by variations in cloud‐top cloudiness. Cloud amount near cloud base varies little. Each pattern is associated with a distinct atmospheric environment whose characteristics are traced back to origins that are not solely within the trades. Sugar air‐masses are characterized by weak winds and of tropical origin. Fish are driven by convergence lines originating from synoptical disturbances. Gravel and Flowers are most native to the trades, but distinguish themselves with slightly stronger winds and stronger subsidence in the first case and greater stability in the latter. The patterns with the higher cloud amounts and more negative cloud‐radiative effects, Flowers and Fish, are selected by conditions expected to occur less frequently with greenhouse warming.
    Description: Key Points: Meso‐scale patterns of trade‐wind clouds are identified with a neural network and characterized based on observations. The four analyzed patterns distinguish themselves by stratiform cloudiness and less by cloudiness at the lifting condensation level. Two patterns are imprinted by tropical, respectively extra‐tropical intrusions.
    Description: European Union's Horizon 2020 Research and Innovation Programme
    Description: NASA
    Description: https://doi.org/10.5281/zenodo.4767674
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...