ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-25
    Description: Dataset: broadscale_grid
    Description: Grid developed for Broad-scale gridding in the Georges Bank and Gulf of Maine area (GB project) For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/2296
    Description: National Science Foundation (NSF) unknown GB NSF, National Oceanic and Atmospheric Administration (NOAA) unknown GB NOAA
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-25
    Description: Dataset: station_plans
    Description: Broad-scale station numbers and locations from the US-GLOBEC Georges Bank project For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/2329
    Description: National Science Foundation (NSF) unknown GB NSF, National Oceanic and Atmospheric Administration (NOAA) unknown GB NOAA
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Danabalan, D., Gluyas, J. G., Macpherson, C. G., Abraham-James, T. H., Bluett, J. J., Barry, P. H., & Ballentine, C. J. The principles of helium exploration. Petroleum Geoscience, 28(2), (2022): petgeo2021-029, https://doi.org/10.1144/petgeo2021-029.
    Description: Commercial helium systems have been found to date as a serendipitous by-product of petroleum exploration. There are nevertheless significant differences in the source and migration properties of helium compared with petroleum. An understanding of these differences enables prospects for helium gas accumulations to be identified in regions where petroleum exploration would not be tenable. Here we show how the basic petroleum exploration playbook (source, primary migration from the source rock, secondary longer distance migration, trapping) can be modified to identify helium plays. Plays are the areas occupied by a prospective reservoir and overlying seal associated with a mature helium source. This is the first step in identifying the detail of helium prospects (discrete pools of trapped helium). We show how these principles, adapted for helium, can be applied using the Rukwa Basin in the Tanzanian section of the East African Rift as a case study. A thermal hiatus caused by rifting of the continental basement has resulted in a surface expression of deep crustal gas release in the form of high-nitrogen gas seeps containing up to 10% 4He. We calculate the total likely regional source-rock helium generative capacity, identify the role of the Rungwe volcanic province in releasing the accumulated crustal helium and show the spatial control of helium concentration dilution by the associated volcanic CO2. Nitrogen, both dissolved and as a free-gas phase, plays a key role in the primary and secondary migration of crustal helium and its accumulation into what might become a commercially viable gas pool. This too is examined. We identify and discuss evidence that structures and seals suitable for trapping hydrocarbon and CO2 gases will likely also be efficient for helium accumulation on the timescale of the Rukwa Basin activity. The Rukwa Basin prospective recoverable P50 resources of helium have been independently estimated to be about 138 BSCF (billion standard cubic ft: 2.78 × 109 m3 at STP). If this volume is confirmed it would represent about 25% of the current global helium reserve. Two exploration wells, Tai 1 and Tai 2, completed by August 2021 have proved the presence of seal and reservoir horizons with the reservoirs containing significant helium shows.
    Description: The PhD study was funded by Statoil (renamed Equinor), Norway. Fieldwork in Tanzania and analyses of the gases sampled in Tanzania were funded by Helium One Global Limited.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: CPR plankton occurrence 2014-2019
    Description: Continous Plankton Recorder phytoplankton and zooplankton occurrence and count data from the Marine Biological Association of the UK, the CPR Survey, in the North Atlantic Ocean from Jan. 2014 to Jan. 2019. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/765141
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1154661, NSF Division of Ocean Sciences (NSF OCE) OCE-1657887
    Keywords: Time series ; Monitoring ; CPR ; Phytoplankton ; Zooplankton ; Diet ; Size
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-31
    Description: Dataset: Share Your Thoughts
    Description: Oceanographic data, when well-documented and stewarded toward preservation, have the potential to accelerate new science and facilitate our understanding of complex natural systems. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is funded by the NSF to document and manage marine biological, chemical, physical, and biogeochemical data, ensuring their discovery and access, and facilitating their reuse. The task of curating and providing access to research data is a collaborative process, with associated actors and critical activities occurring throughout the data’s life cycle. BCO-DMO supports all phases of the data life cycle and works closely with investigators to ensure open access of well-documented project data and information. Supporting this curation process is a flexible cyberinfrastructure that provides the means for data submission, discovery, and access; ultimately enabling reuse. Based upon community feedback, this infrastructure is undergoing evaluation and improvement to better meet oceanographic research needs. This poster will introduce the repository and describe some of the strategic enhancements coming to BCO-DMO, and presents an opportunity for you to provide feedback on enhancements yet to come. We invite you to think about your own research workflow of searching and accessing new data for research, and to provide your feedback through the poster’s interactive sections. Your input can help BCO-DMO improve its service to the research community. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/825238
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1924618
    Keywords: Data management. stakeholder needs ; Oceanography ; BCO-DMO ; Repository ; Community building
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: cp_decibels
    Description: Acoustic backscatter data in relative decibels (one of three related datasets) from the AL9801 cruise on the R/V Albatross IV in the Gulf of Maine and Georges Bank in 1998 (GLOBEC-Georges Bank project) For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/2392
    Description: National Science Foundation (NSF) unknown GB NSF, National Oceanic and Atmospheric Administration (NOAA) unknown GB NOAA
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems XX (2019): Tyne, R. L., Barry, P. H., Hillegonds, D. J., Hunt, A. G., Kulongoski, J. T., Stephens, M. J., Byrne, D. J., & Ballentine, C. J. A novel method for the extraction, purification, and characterization of noble gases in produced fluids. Geochemistry Geophysics Geosystems, 20, (2019): 5588-5597, doi: 10.1029/2019GC008552.
    Description: Hydrocarbon systems with declining or viscous oil production are often stimulated using enhanced oil recovery (EOR) techniques, such as the injection of water, steam, and CO2, in order to increase oil and gas production. As EOR and other methods of enhancing production such as hydraulic fracturing have become more prevalent, environmental concerns about the impact of both new and historical hydrocarbon production on overlying shallow aquifers have increased. Noble gas isotopes are powerful tracers of subsurface fluid provenance and can be used to understand the impact of EOR on hydrocarbon systems and potentially overlying aquifers. In oil systems, produced fluids can consist of a mixture of oil, water and gas. Noble gases are typically measured in the gas phase; however, it is not always possible to collect gases and therefore produced fluids (which are water, oil, and gas mixtures) must be analyzed. We outline a new technique to separate and analyze noble gases in multiphase hydrocarbon‐associated fluid samples. An offline double capillary method has been developed to quantitatively isolate noble gases into a transfer vessel, while effectively removing all water, oil, and less volatile hydrocarbons. The gases are then cleaned and analyzed using standard techniques. Air‐saturated water reference materials (n = 24) were analyzed and results show a method reproducibility of 2.9% for 4He, 3.8% for 20Ne, 4.5% for 36Ar, 5 .3% for 84Kr, and 5.7% for 132Xe. This new technique was used to measure the noble gas isotopic compositions in six produced fluid samples from the Fruitvale Oil Field, Bakersfield, California.
    Description: This work was supported by a Natural Environment Research Council studentship to R. L. Tyne (grant NE/L002612/1) and the USGS (grant 15‐080‐250), as part of the California State Water Resource Control Board's, Oil and Gas Regional Groundwater Monitoring Program (RMP). Data can be accessed in Tables 1 and 2 and in the data release from Gannon et al. (2018). We thank the owners and operators at the Fruitvale Oil Field for access to wells. We thank Stuart Gilfillan and an anonymous reviewer for their constructive reviews as well as Marie Edmonds for editorial handling. We also thank Matthew Landon and Myles Moor from the USGS who provided helpful comments on an earlier version of the manuscript. Any use of trade, firm or product names are for descriptive purposes only and do not imply endorsement by the U.S. Government.
    Description: 2020-04-14
    Keywords: Noble Gas ; Methods ; Produced Fluids
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Barry, P. H., Nakagawa, M., Giovannelli, D., de Moor, J. M., Schrenk, M., Seltzer, A. M., Manini, E., Fattorini, D., di Carlo, M., Regoli, F., Fullerton, K., & Lloyd, K. G. Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin. Scientific Data, 6(1), (2019): 284, doi: 10.1038/s41597-019-0302-4.
    Description: In 2017, fluid and gas samples were collected across the Costa Rican Arc. He and Ne isotopes, C isotopes as well as total organic and inorganic carbon concentrations were measured. The samples (n = 24) from 2017 are accompanied by (n = 17) samples collected in 2008, 2010 and 2012. He-isotopes ranged from arc-like (6.8 RA) to crustal (0.5 RA). Measured dissolved inorganic carbon (DIC) δ13CVPDB values varied from 3.55 to −21.57‰, with dissolved organic carbon (DOC) following the trends of DIC. Gas phase CO2 only occurs within ~20 km of the arc; δ13CVPDB values varied from −0.84 to −5.23‰. Onsite, pH, conductivity, temperature and dissolved oxygen (DO) were measured; pH ranged from 0.9–10.0, conductivity from 200–91,900 μS/cm, temperatures from 23–89 °C and DO from 2–84%. Data were used to develop a model which suggests that ~91 ± 4.0% of carbon released from the slab/mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition with an additional 3.3 ± 1.3% incorporated into autotrophic biomass.
    Description: This work was principally supported by a grant (G-2016-7206) from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B. In addition, P.H.B. was supported by NSF grant 1144559 during a portion of this project. D.G. was supported by an NSF grant (MCB 15–17567) and an ELSI Origins Network (EON) research Fellowship, which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. DG was also partially supported a Deep Life Modeling and Visualization Fellowship, which is supported by the Deep Carbon Observatory. This work was further supported in party by JSPS KAKENHI grants (JP17K14412, JP17H06105, JP17H02989) awarded to M.N., NSF OCE-1431598 and NASA Exobiology NNX16AL59G awarded to K.G.L. J.M.d.M. gratefully acknowledges funding from Universidad Nacional Costa Rica, the World Bank, and the Costa Rican Ley Transitorio 8933 used to acquire a laser carbon isotope system in collaboration with R. Sánchez-Murillo and G. Esquivel-Hernandez. M.N. produced the most data. We thank Patricia Barcala Dominguez for assistance with figure illustration. We thank Bruce Deck, Marten Wahlen and Keith Blackmon for analytical assistance at SIO. Finally, we acknowledge D. Hummer, T. Lopez, C.A. Pratt, Y. Alpízar Segura, A. Battaglia, P. Beaudry, G. Bini, M. Cascante, G. d’Errico, K. Fullerton, E. Gazel, G. González, S. A. Halldórsson, K. Iacovino, T. Ilanko, J.T. Kulongoski, M. Martínez, H. Miller, S. Ono, S. Patwardhan, C.J. Ramírez, F. Smedile, S. Turner, C. Vetriani, M. Yücel, C.J. Ballentine, T.P. Fischer, and D.R. Hilton, who were instrumental in proposal writing, sample collection, sample analysis and data analysis.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marty, B., Almayrac, M., Barry, P. H., Bekaert, D., V., Broadley, M. W., Byrne, D. J., Ballentine, C. J., & Caracausi, A. An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: Geochemical and cosmochemical implications. Earth and Planetary Science Letters, 551, (2020): 116574, doi:10.1016/j.epsl.2020.116574.
    Description: The terrestrial carbon to nitrogen ratio is a key geochemical parameter that can provide information on the nature of Earth's precursors, accretion/differentiation processes of our planet, as well as on the volatile budget of Earth. In principle, this ratio can be determined from the analysis of volatile elements trapped in mantle-derived rocks like mid-ocean ridge basalts (MORB), corrected for fractional degassing during eruption. However, this correction is critical and previous attempts have adopted different approaches which led to contrasting C/N estimates for the bulk silicate Earth (BSE) (Marty and Zimmermann, 1999; Bergin et al., 2015). Here we consider the analysis of CO2-rich gases worldwide for which a mantle origin has been determined using noble gas isotopes in order to evaluate the C/N ratio of the mantle source regions. These gases experienced little fractionation due to degassing, as indicated by radiogenic 4He / 40Ar* values (where 4He and 40Ar* are produced by the decay of U+Th, and 40K isotopes, respectively) close to the mantle production/accumulation values. The C/N and C/3 He ratios of gases investigated here are within the range of values previously observed in oceanic basalts. They point to an elevated mantle C/N ratio (∼350-470, molar) higher than those of potential cosmochemical accretionary endmembers. For example, the BSE C/N and 36 Ar / N ratios (160-220 and 75 x 10-7, respectively) are higher than those of CM-CI chondrites but within the range of CV-CO groups. This similarity suggests that the Earth accreted from evolved planetary precursors depleted in volatile and moderately volatile elements. Hence the high C / N composition of the BSE may be an inherited feature rather than the result of terrestrial differentiation. The C / N and 36 Ar / N ratios of the surface (atmosphere plus crust) and of the mantle cannot be easily linked to any known chondritic composition. However, these compositions are consistent with early sequestration of carbon into the mantle (but not N and noble gases), permitting the establishment of clement temperatures at the surface of our planet.
    Description: M.A, D.V.B, M.W.B, D.J.B and B.M were supported by the European Research Council (PHOTONIS project, grant agreement No. 695618 to B.M.). Samples were collected as part of Study # YELL-08056 - Xenon anomalies in the Yellowstone Hotspot. We would like to thank Annie Carlson and all of the rangers at the Yellowstone National Park for providing invaluable advice and help when collecting the samples. This work was partially supported by a grant (G-2016-7206) from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B as well as NSF award 2015789 to P.H.B.. Sampling at Mt. Etna and gas analysis was supported by Instituto Nazionale di Geofisica e Vulcanologia Palermo. Fruitful discussions with Marc Hirschmann helped us to shape the ideas presented in this work. We acknowledge detailed and insightful reviews by Sami Mikhail and an anonymous reviewer, and efficient editing by Frederic Moynier. This is CRPG contribution 2741.
    Keywords: Carbon ; Nitrogen ; Earth ; Mantle ; Gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tyne, R., Barry, P., Cheng, A., Hillegonds, D., Kim, J.-H., McIntosh, J., & Ballentine, C. Basin architecture controls on the chemical evolution and 4He distribution of groundwater in the Paradox Basin. Earth and Planetary Science Letters, 589, (2022):117580, https://doi.org/10.1016/j.epsl.2022.117580.
    Description: Fluids such as 4He, H2, CO2 and hydrocarbons accumulate within Earth's crust. Crustal reservoirs also have potential to store anthropogenic waste (e.g., CO2, spent nuclear fuel). Understanding fluid migration and how this is impacted by basin stratigraphy and evolution is key to exploiting fluid accumulations and identifying viable storage sites. Noble gases are powerful tracers of fluid migration and chemical evolution, as they are inert and only fractionate by physical processes. The distribution of 4He, in particular, is an important tool for understanding diffusion within basins and for groundwater dating. Here, we report noble gas isotope and abundance data from 36 wells across the Paradox Basin, Colorado Plateau, USA, which has abundant hydrocarbon, 4He and CO2 accumulations. Both groundwater and hydrocarbon samples were collected from 7 stratigraphic units, including within, above and below the Paradox Formation (P.Fm) evaporites. Air-corrected helium isotope ratios (0.0046 - 0.127 RA) are consistent with radiogenic overprinting of predominantly groundwater-derived noble gases. The highest radiogenic noble gas concentrations are found in formations below the P.Fm. Atmosphere-derived noble gas signatures are consistent with meteoric recharge and multi-phase interactions both above and below the P.Fm, with greater groundwater-gas interactions in the shallower formations. Vertical diffusion models, used to reconstruct observed groundwater helium concentrations, show the P.Fm evaporite layer to be effectively impermeable to helium diffusion and a regional barrier for mobile elements but, similar to other basins, a basement 4He flux is required to accumulate the 4He concentrations observed beneath the P.Fm. The verification that evaporites are regionally impermeable to diffusion, of even the most diffusive elements, is important for sub-salt helium and hydrogen exploration and storage, and a critical parameter in determining 4He-derived mean groundwater ages. This is critical to understanding the role of basin stratigraphy and deformation on fluid flow and gas accumulation.
    Description: This work was supported by a Natural Environment Research Council studentship to R.L. Tyne (Grant ref. NE/L002612/1). We gratefully acknowledge the William F. Keck Foundation for support of this research, and the National Science Foundation (NSF EAR #2120733). J.C. McIntosh and C.J. Ballentine are fellows of the CIFAR Earth4D Subsurface Science and Exploration Program. The authors would like to acknowledge the U.S. Bureau of Reclamation, Paradox Resources, Navajo Petroleum, US Oil and Gas INC, Anson Resources, Lantz Indergard (Lisbon Valley Mining Co.), Ambria Dell'Oro and Mohammad Marza for help with sampling.
    Keywords: Noble gases ; Helium ; Paradox Basin ; Crustal fluid dating ; Groundwater migration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...