ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (5)
  • 1
    Publication Date: 2022-03-25
    Description: The stability of ice shelves and drainage of ice sheets they buttress is largely determined by melting at their atmospheric and oceanic interfaces. Subglacial bathymetry can impact ice shelf stability because it influences the onset and the pattern of warm ocean water incursions into the cavities between them and the seafloor. Bathymetry is further important at pinning points, which significantly retard the flow of ice shelves. This effect can be lost instantaneously if basal and surface melting cause an ice sheet to thin and lift off its pinning points. With all this in mind, we have developed a model of bathymetry beneath the western Roi Baudouin and central and eastern Borchgrevink ice shelves in Dronning Maud Land based on inversion from gravity data and tied to available depth references offshore and subglacial topography inland of the grounding line. The model shows deep glacial troughs beneath the ice shelves and bathymetric sills close to the continental shelf. The central Borchgrevink Ice Shelf overhangs the continental slope by around 50 km, exposing its northern parts to the open ocean and higher ocean temperatures. Continuous troughs traverse the central Borchgrevink and western Roi Baudouin ice shelves at depths greater than the offshore thermocline and thus present a risk of Warm Deep Water intrusions into their cavities under the current and future oceanographic regimes. Differing bathymetric characteristics might explain the ice shelves' contrasting dominant mass loss processes.
    Description: Plain Language Summary: The rate at which Antarctica's ice sheets flow off the continent is largely stabilized by floating ice shelves that form where they meet the surrounding ocean. Assessing the stability of this interconnected system strongly depends on correctly quantifying ice gain processes, such as snowfall, and ice mass loss processes, such as melting at the bases of the ice shelves. This basal melting strongly depends on the flow of warm ocean water into the cavity between the ice shelf and the seafloor below, which is in turn influenced by the shape of the seabed. Using sparse direct measurements together with small variations in the pull of gravity measured from airplanes, we have generated a model of the formerly unknown topography beneath the Borchgrevink and Roi Baudouin ice shelves in East Antarctica. The modeled seabed shows deep troughs beneath the ice shelves and topographic sills along the continental shelf. Gateways within these sills potentially allow for the intrusion of warm water into the cavities, representing a threat to future ice shelf stability.
    Description: Key Points: We have generated bathymetric models based on gravity inversion beneath the Roi Baudouin and Borchgrevink ice shelves. Results are similar to ice shelves throughout the entire Dronning Maud Land, which are all crossed by deep troughs and bathymetric sills. Deep gateways leading from the open ocean into ice shelf cavities possibly allow for the intrusion of Warm Deep Water into these cavities.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Alfred Wegener Institute
    Description: Helmholtz Centre for Polar and Marine Research
    Description: Federal Institute for Geosciences and Natural Resources (BGR)
    Keywords: ddc:526.7 ; ddc:551.343
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-14
    Description: The West Antarctic Ice Sheet (WAIS) presently holds enough ice to raise global sea level by 4.3 m if completely melted. The unknown response of the WAIS to future warming remains a significant challenge for numerical models in quantifying predictions of future sea level rise. Sea level rise is one of the clearest planet-wide signals of human-induced climate change. The Sensitivity of the West Antarctic Ice Sheet to a Warming of 2 ∘C (SWAIS 2C) Project aims to understand past and current drivers and thresholds of WAIS dynamics to improve projections of the rate and size of ice sheet changes under a range of elevated greenhouse gas levels in the atmosphere as well as the associated average global temperature scenarios to and beyond the +2 ∘C target of the Paris Climate Agreement. Despite efforts through previous land and ship-based drilling on and along the Antarctic margin, unequivocal evidence of major WAIS retreat or collapse and its causes has remained elusive. To evaluate and plan for the interdisciplinary scientific opportunities and engineering challenges that an International Continental Drilling Program (ICDP) project along the Siple coast near the grounding zone of the WAIS could offer (Fig. 1), researchers, engineers, and logistics providers representing 10 countries held a virtual workshop in October 2020. This international partnership comprised of geologists, glaciologists, oceanographers, geophysicists, microbiologists, climate and ice sheet modelers, and engineers outlined specific research objectives and logistical challenges associated with the recovery of Neogene and Quaternary geological records from the West Antarctic interior adjacent to the Kamb Ice Stream and at Crary Ice Rise. New geophysical surveys at these locations have identified drilling targets in which new drilling technologies will allow for the recovery of up to 200 m of sediments beneath the ice sheet. Sub-ice-shelf records have so far proven difficult to obtain but are critical to better constrain marine ice sheet sensitivity to past and future increases in global mean surface temperature up to 2 ∘C above pre-industrial levels. Thus, the scientific and technological advances developed through this program will enable us to test whether WAIS collapsed during past intervals of warmth and determine its sensitivity to a +2 ∘C global warming threshold (UNFCCC, 2015).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2022-01-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-02
    Description: The Ekström Ice Shelf is one of numerous small ice shelves that fringe the coastline of western Dronning Maud Land, East Antarctica. Reconstructions of past ice-sheet extent in this area are poorly constrained, due to a lack of geomorphological evidence. Here, we present a compilation of geophysical surveys in front of and beneath the Ekström Ice Shelf, to identify and interpret evidence of past ice-sheet flow, extent and retreat. The sea floor beneath the Ekström Ice Shelf is dominated by an incised trough, which extends from the modern-day grounding line onto the continental shelf. Our surveys show that mega-scale glacial lineations cover most of the mouth of this trough, terminating 11 km away from the continental shelf break, indicating the most recent minimal extent of grounded ice in this region. Beneath the front ∼30 km of the ice shelf measured from the ice shelf edge towards the inland direction, the sea floor is characterised by an acoustically transparent sedimentary unit, up to 45 m thick. This is likely composed of subglacial till, further corroborating the presence of past grounded ice cover. Further inland, the sea floor becomes rougher, interpreted as a transition from subglacial tills to a crystalline bedrock, corresponding to the outcrop of the volcanic Explora Wedge at the sea floor. Ice retreat in this region appears to have happened rapidly in the centre of the incised trough, evidenced by a lack of overprinting of the lineations at the trough mouth. At the margins of the trough uniformly spaced recessional moraines suggest ice retreated more gradually. We estimate the palaeo-ice thickness at the calving front around the Last Glacial Maximum to have been at least 305 to 320 m, based on the depth of iceberg ploughmarks within the trough and sea level reconstructions. Given the similarity of the numerous small ice shelves along the Dronning Maud Land coast, these findings are likely representative for other ice shelves in this region and provide essential boundary conditions for palaeo ice-sheet models in this severely understudied region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...