ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (16)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2022-09-22
    Description: Simulating sea ice drift and deformation in the Arctic Ocean is still a challenge because of the multiscale interaction of sea ice floes that compose the Arctic Sea ice cover. The Sea Ice Rheology Experiment (SIREx) is a model intercomparison project of the Forum of Arctic Modeling and Observational Synthesis (FAMOS). In SIREx, skill metrics are designed to evaluate different recently suggested approaches for modeling linear kinematic features (LKFs) to provide guidance for modeling small‐scale deformation. These LKFs are narrow bands of localized deformation that can be observed in satellite images and also form in high resolution sea ice simulations. In this contribution, spatial and temporal properties of LKFs are assessed in 36 simulations of state‐of‐the‐art sea ice models and compared to deformation features derived from the RADARSAT Geophysical Processor System. All simulations produce LKFs, but only very few models realistically simulate at least some statistics of LKF properties such as densities, lengths, or growth rates. All SIREx models overestimate the angle of fracture between conjugate pairs of LKFs and LKF lifetimes pointing to inaccurate model physics. The temporal and spatial resolution of a simulation and the spatial resolution of atmospheric boundary condition affect simulated LKFs as much as the model's sea ice rheology and numerics. Only in very high resolution simulations (≤2 km) the concentration and thickness anomalies along LKFs are large enough to affect air‐ice‐ocean interaction processes.
    Description: Plain Language Summary: Winds and ocean currents continuously move and deform the sea ice cover of the Arctic Ocean. The deformation eventually breaks an initially closed ice cover into many individual floes, piles up floes, and creates open water. The distribution of ice floes and open water between them is important for climate research, because ice reflects more light and energy back to the atmosphere than open water, so that less ice and more open water leads to warmer oceans. Current climate models cannot simulate sea ice as individual floes. Instead, a variety of methods is used to represent the movement and deformation of the sea ice cover. The Sea Ice Rheology Experiment (SIREx) compares these different methods and assesses the deformation of sea ice in 36 numerical simulations. We identify and track deformation features in the ice cover, which are distinct narrow areas where the ice is breaking or piling up. Comparing specific spatial and temporal properties of these features, for example, the different amounts of fractured ice in specific regions, or the duration of individual deformation events, to satellite observations provides information about the realism of the simulations. From this comparison, we can learn how to improve sea ice models for more realistic simulations of sea ice deformation.
    Description: Key Points: All models simulate linear kinematic features (LKFs), but none accurately reproduces all LKF statistics. Resolved LKFs are affected strongest by spatial and temporal resolution of model grid and atmospheric forcing and rheology. Accurate scaling of deformation rates is a proxy only for realistic LKF numbers but not for any other LKF static.
    Description: DOE
    Description: HYCOM NOPP
    Description: Innovation Fund Denmark and the Horizon 2020 Framework Programme of the European Union
    Description: National centre for Climate Research, SALIENSEAS, ERA4CS
    Description: German Helmholtz Climate Initiative REKLIM (Regional Climate Change)
    Description: Gouvernement du Canada, Natural Sciences and Engineering Research Council of Canada (NSERC) http://dx.doi.org/10.13039/501100000038
    Description: Environment and Climate Change Canada Grants & Contributions program
    Description: Office of Naval Research Arctic and Global Prediction program
    Description: U.S. Department of Energy Regional and Global Model Analysis program
    Description: National Science Foundation Arctic System Science program
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://zenodo.org/communities/sirex
    Keywords: ddc:550.285
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-01
    Description: The transient climate response (TCR) is 20% higher in the Alfred Wegener Institute Climate Model (AWI‐CM) compared to the Max Planck Institute Earth System Model (MPI‐ESM) whereas the equilibrium climate sensitivity (ECS) is by up to 10% higher in AWI‐CM. These results are largely independent of the two considered model resolutions for each model. The two coupled CMIP6 models share the same atmosphere‐land component ECHAM6.3 developed at the Max Planck Institute for Meteorology (MPI‐M). However, ECHAM6.3 is coupled to two different ocean models, namely the MPIOM sea ice‐ocean model developed at MPI‐M and the FESOM sea ice‐ocean model developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). A reason for the different TCR is related to ocean heat uptake in response to greenhouse gas forcing. Specifically, AWI‐CM simulations show stronger surface heating than MPI‐ESM simulations while the latter accumulate more heat in the deeper ocean. The vertically integrated ocean heat content is increasing slower in AWI‐CM model configurations compared to MPI‐ESM model configurations in the high latitudes. Weaker vertical mixing in AWI‐CM model configurations compared to MPI‐ESM model configurations seems to be key for these differences. The strongest difference in vertical ocean mixing occurs inside the Weddell and Ross Gyres and the northern North Atlantic. Over the North Atlantic, these differences materialize in a lack of a warming hole in AWI‐CM model configurations and the presence of a warming hole in MPI‐ESM model configurations. All these differences occur largely independent of the considered model resolutions.
    Description: Plain Language Summary: The transient climate response (TCR) describes how strongly near‐surface temperatures warm in response to gradually increasing greenhouse‐gas levels. Here we investigate the role of the ocean which takes up heat and thereby delays the surface warming. Two models of the Coupled Model Intercomparison Project Phase 6 (CMIP6), the Alfred Wegener Institute Climate Model (AWI‐CM) and the Max Planck Institute Earth System Model (MPI‐ESM), which use the same atmosphere model but different ocean models are selected for this study. In AWI‐CM the upper ocean layers heat faster than in MPI‐ESM, while the opposite is true for the deep ocean. As a consequence, the TCR is 20% stronger in AWI‐CM compared to MPI‐ESM. We find that weaker vertical ocean mixing in AWI‐CM compared to MPI‐ESM, especially over the northern North Atlantic and the Weddell and Ross Gyres, is key for these differences. Our findings corroborate the importance of realistic ocean mixing in climate models when it comes to getting the strength and timing of climate change right.
    Description: Key Points: The transient climate response in two coupled models with the same atmosphere but different ocean components differs by 20%. The upper (deeper) ocean heats faster (slower) in AWI‐CM compared to MPI‐ESM, independent of model resolution. Vertical mixing in the northern North Atlantic and the Weddell and Ross Gyres appears to be key for these differences.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: German Climate Computing Centre (DKRZ)
    Description: Federal Ministry of Education and Research of Germany
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: https://esgf-data.dkrz.de/projects/cmip6-dkrz/
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-05
    Description: Simulating sea ice drift and deformation in the Arctic Ocean is still a challenge because of the multiscale interaction of sea ice floes that compose the Arctic Sea ice cover. The Sea Ice Rheology Experiment (SIREx) is a model intercomparison project of the Forum of Arctic Modeling and Observational Synthesis (FAMOS). In SIREx, skill metrics are designed to evaluate different recently suggested approaches for modeling linear kinematic features (LKFs) to provide guidance for modeling small-scale deformation. These LKFs are narrow bands of localized deformation that can be observed in satellite images and also form in high resolution sea ice simulations. In this contribution, spatial and temporal properties of LKFs are assessed in 36 simulations of state-of-the-art sea ice models and compared to deformation features derived from the RADARSAT Geophysical Processor System. All simulations produce LKFs, but only very few models realistically simulate at least some statistics of LKF properties such as densities, lengths, or growth rates. All SIREx models overestimate the angle of fracture between conjugate pairs of LKFs and LKF lifetimes pointing to inaccurate model physics. The temporal and spatial resolution of a simulation and the spatial resolution of atmospheric boundary condition affect simulated LKFs as much as the model's sea ice rheology and numerics. Only in very high resolution simulations (≤2 km) the concentration and thickness anomalies along LKFs are large enough to affect air-ice-ocean interaction processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-13
    Description: Simulating sea-ice drift and deformation in the Arctic Ocean is still a challenge because of the multi-scale interaction of sea-ice floes that compose the Arctic sea ice cover. The Sea Ice Rheology Experiment (SIREx) is a model intercomparison project formed within the Forum of Arctic Modeling and Observational Synthesis (FAMOS) to collect and design skill metrics to evaluate different recently suggested approaches for modeling linear kinematic features (LKFs) and provide guidance for modeling small-scale deformation. In this contribution, spatial and temporal properties of LKFs are assessed in 33 simulations of state-of-the-art sea ice models (VP/EVP,EAP, and MEB) and compared to deformation features derived from RADARSAT Geophysical Processor System (RGPS). All simulations produce LKFs, but only very few models realistically simulate at least some statistics of LKF properties such as densities, lengths, lifetimes, or growth rates. All SIREx models overestimate the angle of fracture between conjugate pairs of LKFs pointing to inaccurate model physics. The temporal and spatial resolution of a simulation and the spatial resolution of atmospheric forcing affect simulated LKFs as much as the model's sea ice rheology and numerics. Only in very high resolution simulations (≤2km) the concentration and thickness anomalies along LKFs are large enough to affect air-ice-ocean interaction processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-13
    Description: The sea-ice modelling community progresses towards Pan-Arctic simulations that explicitly resolve leads in the simulated ice cover. Initiated by the Sea-Ice Working Group at the Forum for Arctic Modelling and Observational Synthesis (FAMOS), the Sea Ice Rheology Experiment (SIREx) aims to understand how the simulated deformation fields are affected by different representations of sea-ice physics and other model parameterizations by comparing 11 state-of-the-art models. The inter-comparison project comprises models using all four most commonly used rheologies (VP, EVP, EAP, and MEB), various resolution (1-12km), different atmospheric forcing, and different model parameterizations. We use a two-step evaluation: (1) a multi-fractal scaling analysis of deformation fields, which is the standard method in the field so far, and (2) a new feature-based evaluation, which compares spatial and temporal characteristics of tracked deformation features. In both parts, we find that model configuration (e.g. grid spacing, atmospheric forcing) and physical parameterizations (ice strength and ice thickness distribution) can have an impact as important as the choice of rheology on the realism of simulated deformation fields.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-08-16
    Description: The second part of the assessment and evaluation of the unstructured-mesh Finite-volumE Sea ice–Ocean Model version 2.0 (FESOM2.0) is presented. It focuses on the performance of partial cells and embedded sea ice and the effect of mixing parameterisations available through the Community Vertical Mixing (CVMix) package. It is shown that partial cells and embedded sea ice lead to significant improvements in the representation of the Gulf Stream and North Atlantic Current and the circulation of the Arctic Ocean. In addition to the already existing Pacanowski and Phillander (fesom_PP) and K-profile (fesom_KPP) parameterisations for vertical mixing in FESOM2.0, we document the impact of several mixing parameterisations from the CVMix project library. Among them are the CVMix versions of Pacanowski and Phillander (cvmix_PP) and K-profile (cvmix_KPP) parameterisations; the tidal mixing parameterisation (cvmix_TIDAL); a vertical mixing parameterisation based on turbulent kinetic energy (cvmix_TKE); and a combination of cvmix_TKE and the recent scheme for the computation of the Internal Wave Dissipation, Energy, and Mixing (IDEMIX) parameterisation. IDEMIX parameterises the redistribution of internal wave energy through wave propagation, non-linear interactions and the associated imprint on the vertical background diffusivity. Further, the benefit from using a parameterisation of Southern Hemisphere sea ice melt season mixing in the surface layer (MOMIX) for reducing Southern Ocean hydrographic biases in FESOM2.0 is presented. We document the implementation of different model components and illustrate their behaviour. This paper serves primarily as a reference for FESOM users but is also useful to the broader modelling community.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-08-16
    Description: With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-08-23
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in von Appen, W.-J., Baumann, T. M., Janout, M., Koldunov, N., Lenn, Y.-D., Pickart, R. S., Scott, R. B., & Wang, Q. Eddies and the distribution of eddy kinetic energy in the Arctic Ocean. Oceanography, 35(2), (2022), https://doi.org/10.5670/oceanog.2022.122.
    Description: Mesoscale eddies are important to many aspects of the dynamics of the Arctic Ocean. Among others, they maintain the halocline and interact with the Atlantic Water circumpolar boundary current through lateral eddy fluxes and shelf-basin exchanges. Mesoscale eddies are also important for transporting biological material and for modifying sea ice distribution. Here, we review what is known about eddies and their impacts in the Arctic Ocean in the context of rapid climate change. Eddy kinetic energy (EKE) is a proxy for mesoscale variability in the ocean due to eddies. We present the first quantification of EKE from moored observations across the entire Arctic Ocean and compare those results to output from an eddy resolving numerical model. We show that EKE is largest in the northern Nordic Seas/Fram Strait and it is also elevated along the shelf break of the Arctic Circumpolar Boundary Current, especially in the Beaufort Sea. In the central basins, EKE is 100–1,000 times lower. Generally, EKE is stronger when sea ice concentration is low versus times of dense ice cover. As sea ice declines, we anticipate that areas in the Arctic Ocean where conditions typical of the North Atlantic and North Pacific prevail will increase. We conclude that the future Arctic Ocean will feature more energetic mesoscale variability.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-28
    Description: We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi-model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub-Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...