ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (9)
  • 1
    Publication Date: 2022-04-07
    Description: The decomposition of thawing permafrost organic matter (OM) to the greenhouse gases (GHG) carbon dioxide (CO2) and methane forms a positive feedback to global climate change. Data on in situ GHG fluxes from thawing permafrost OM are scarce and OM degradability is largely unknown, causing high uncertainties in the permafrost‐carbon climate feedback. We combined in situ CO2 and methane flux measurements at an abrupt permafrost thaw feature with laboratory incubations and dynamic modeling to quantify annual CO2 release from thawing permafrost OM, estimate its in situ degradability and evaluate the explanatory power of incubation experiments. In July 2016 and 2019, CO2 fluxes ranged between 0.24 and 2.6 g CO2‐C m−2 d−1. Methane fluxes were low, which coincided with the absence of active methanogens in the Pleistocene permafrost. CO2 fluxes were lower three years after initial thaw after normalizing these fluxes to thawed carbon, indicating the depletion of labile carbon. Higher CO2 fluxes from thawing Pleistocene permafrost than from Holocene permafrost indicate OM preservation for millennia and give evidence that microbial activity in the permafrost was not substantial. Short‐term incubations overestimated in situ CO2 fluxes but underestimated methane fluxes. Two independent models simulated median annual CO2 fluxes of 160 and 184 g CO2‐C m−2 from the thaw slump, which include 25%–31% CO2 emissions during winter. Annual CO2 fluxes represent 0.8% of the carbon pool thawed in the surface soil. Our results demonstrate the potential of abrupt thaw processes to transform the tundra from carbon neutral into a substantial GHG source.
    Description: Plain Language Summary: Thawing of permanently frozen soils (permafrost) in the northern hemisphere forms a threat to global climate since these soils contain large amounts of frozen organic carbon, which might be decomposed to the greenhouse gases (GHGs) carbon dioxide (CO2) and methane upon thaw. How fast these GHGs are produced is largely unknown, since field observations of greenhouse gas fluxes from thawing permafrost are too sparse. Consequently, simulations on the effect of thawing permafrost soils on future climate are highly uncertain. We measured CO2 and methane fluxes from soils affected by abrupt permafrost thaw in Siberia during two summer seasons. We used these field observations and long‐term incubation data to calibrate two models that simulate the CO2 release over a whole year. We found that greenhouse gas fluxes were dominated by CO2 and that the minor importance of methane was due to the absence of methane producing microorganisms in the Pleistocene permafrost. The CO2 release in the first year accounted for 0.8% of thawed permafrost carbon but decomposition rates decreased after the depletion of the rapidly decomposable organic matter. Abrupt permafrost thaw turned the tundra into a substantial source of CO2, of which 25%–31% was released in the non‐growing season.
    Description: Key Points: Abrupt permafrost thaw turned the tundra into a substantial annual source of CO2 of which 25%–31% were released in the non‐growing season. About 0.8% of thawed permafrost carbon was decomposed to CO2 in one year but decomposition rates declined after the loss of labile carbon. Methane contributed a minor fraction to total greenhouse gas fluxes also because of a low methanogen abundance in Pleistocene permafrost.
    Description: German Ministry for Education and Research
    Description: German Research Foundation
    Description: https://doi.org/10.5281/zenodo.5584710
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-11
    Description: As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modelling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the centre of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice‐bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon was ice‐grounded in spring. In bedfast ice areas, the electrical resistivity profiles suggest that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modelling suggests thermokarst lake taliks refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 °C. This occurs, because the top‐down chemical degradation of newly formed ice‐bearing permafrost is slower than the cooling of the talik. Hence, lagoons may pre‐condition taliks with a layer of ice‐bearing permafrost before encroachment by the sea and this frozen layer may act as a cap on gas migration out of the underlying talik.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-11
    Description: Greenhouse gas (GHG) emissions from abrupt thaw beneath thermokarst lakes were projected to at least double radiative forcing from circumpolar permafrost-soil carbon fluxes by the end of this century, primarily through the release of methane, a much stronger GHG than CO2. Thermokarst lagoons represent the first stage of a thermokarst lake transition to a marine setting with so far neglected consequences for GHG production and release. We expected that along the transition from a thermokarst lake to a thermokarst lagoon, sediment concentrations of terminal electron acceptors like sulfate increase with an associated drop in methanogenic activity, a shift towards non-competitive methylotrophic methanogenesis, and the occurrence of sulfate-driven anaerobic methane oxidation (AOM). To explore this, we targeted a variety of geochemical and microbial parameters including sediment methane and CO2 concentrations, gaseous carbon isotopic signatures, hydrochemistry, GHG production rates, ratios of CH4/CO2, and occurrence of methane-cycling microbial taxa in sediments of two thermokarst lakes and a thermokarst lagoon on the Bykovsky Peninsula located in northeastern Siberia adjacent to Tiksi Bay. We found multiple lines of evidence that AOM in sediment layers influenced by Tiksi Bay water (i.e. the lagoon) functions as effective microbial methane filter. Annually, the lagoon is decoupled from Tiksi Bay for more than six months, resulting in more saline conditions below the ice cover compared to Tiksi Bay. Despite sub-zero near-surface sediment temperatures for approximately nine months per year, we show that, at least in early spring, AOM led to near-surface sediment methane concentrations approximating only about 1% of those measured in near-surface thermokarst lake sediments. Structural equation modelling stresses pore-water chemistry and increases in anaerobic methanotrophic abundance as main controls for the drop of in-situ methane concentrations and the corresponding increase in carbon isotopic signature. Shallow sediment layers (i.e. younger carbon) corresponded with higher rates of potential methane production, especially in the non-lagoon settings but even in the lagoon, potential methane production rates in the surface sediment layers were relatively unaffected by the marine influence. We propose that this reflects the overall dominance of non-competitive methylotrophic methanogenesis independent of pore-water chemistry and sediment depth. Overall, our study suggests that thermokarst lake to lagoon transitions have the potential to offset atmospheric methane fluxes from abrupt thaw lake structures long before thermokarst lakes fully transgress onto the Arctic shelf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3International Workshop, Geophysics in Environmental Studies 2021 (European Association of Geoscientists and Engineers (EAGE)), Gelendzhik, Russia & online, 2021-04-27-2021-04-27
    Publication Date: 2022-03-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Melnikov Permafrost Institute (MPI)
    In:  EPIC3Russian Conference with International Participation on the Occasion of the 60th Anniversary of the Melnikov Permafrost Institute (MPI), Yakutsk, Russia, 2020-09-28-2020-09-30Yakutsk, Russia, Melnikov Permafrost Institute (MPI)
    Publication Date: 2022-03-11
    Description: The late Pleistocene ice-rich Yedoma permafrost is extremely sensitive to Arctic warming. Warming air temperatures, decreasing sea ice extent lead to an increasing degradation of the Yedoma permafrost and thus to a greater sediment input from coastal shorelines and river floodplains to the Laptev Sea. Thus, so far freeze-locked sediments and any potentially hazardous contaminants contained in them are entering Arctic waters and the biological food chain. Shallow (down to 〈2m) Arctic permafrost soil layers were found to include high levels of mercury (Hg) due to natural enrichment processes of environmentally available Hg (Schuster et al. 2018). However, opposed to seasonal thaw processes of the active layer and long-term gradual thaw through active layer deepening, abrupt thaw processes such as thermokarst, thermo-erosion, and coastal erosion are capable of mobilising permafrost-soils and stored contaminants from tens of meters depth within years to decades. In this study, we determined Hg concentrations from various deposits in Siberia’s deep permafrost sediments. We studied links between sediment properties and Hg enrichment in order to assess a first deep Hg inventory in late Pleistocene permafrost down to 36 m below surface. To do this, we used sediment profiles from seven sites representing different permafrost degradation states on Bykovsky Peninsula (northern Yakutian coast) and in the Yukechi Alas region (Central Yakutia). We analysed 41 samples for Hg content, total carbon, total nitrogen and organic carbon as well as grain size distribution, bulk density and mass specific magnetic susceptibility. Figure 1: (a) geographical overview and detailed location of the study site at Bykovsky Peninsula (b) and Yukechi Alas in Yakutia (c); (d) stratigraphical transect of the study sites and different states of degrading permafrost in Siberia. The numbers indicate the areas of interest in this study. 1) Talik in Yedoma (unfrozen), 2) late Pleistocene Yedoma (frozen), 3) talik in thermokarst (unfrozen), 4) refrozen drained lake basin = Alas (frozen), 5) talik in thermokarst close to sea (unfrozen), 6) talik below seawater flooded thermokarst basins (= lagoons) (unfrozen). We show that the deep sediments (to 30 meter below surface) are characterized by an Hg concentration of 9.72 ± 9.28 μg kg-1 and an correlation of Hg to organic carbon, total nitrogen, grain-size distribution and mass specific magnetic susceptibility. Hg concentrations are higher in the generally sandier sediment of the Bykovsky Peninsula than in the siltier sediment of the Yukechi Alas. In conclusion, we found that the deep permafrost sediments, frozen since tens of millennia, contain sizeable amounts of Hg. Even though the average amount of Hg is with 9.72 μg/kg below levels immediately critical for life and our median is 85 % less (Schuster et al. 2018) than found in Arctic topsoil outside Siberia. Even if the Hg concentrations are not particularly high compared to other sites, the permafrost’s huge spatial coverage results in a significant amount of Hg that can be introduce into nearby aquatic environments and food webs. As the next step, the consequences of old Hg re-entering the active biogeochemical cycles and food webs with ongoing Arctic warming remain unclear and need to be studied in more detail. References 1.Schuster, P. et al. Geophysical Research Letters, 2018, 45, 1463– 1471, https://doi.org/10.1002/2017GL075571
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-11
    Description: Thermokarst lagoons, forming when thermokarst lakes are inundated by the sea, are an transition stage where terrestrial permafrost is introduced into the subsea realm. Here, permafrost and lacustrine carbon pools are transformed along Arctic coasts. During thaw previously frozen organic carbon can be converted into the greenhouse gases (GHG) carbon dioxide (CO2) and methane by microorganisms and leading to further climate warming. Especially for transition ecosystems like thermokarst lagoons it is largely unknown how GHG release is changing and whether thermokarst lagoons are a carbon source or sink. For getting a first glimpse of the consequences of saltwater inundation, we mimic the inundation of coastal permafrost in an experiment by incubating permafrost and thermokarst samples with artificial sea water under controlled conditions (4°C, dark, anaerobic) for 12 month. We used terrestrial samples from a 2.5 m high Yedoma outcrop, a thermokarst lake core, as well as samples from two neighboring thermokarst lagoons (a nearly-closed and a semi-closed) from the Bykovsky Peninsula, Northeast Siberia. By applying two different scenarios we aim to estimate (1) future GHG releases from newly formed Arctic lagoons by adding artificial seawater with a constant concentration and (2) the impact of increasing salinity on GHG production by incubating the samples under freshwater, brackish and marine conditions. Here we present (1) total organic carbon and dissolved organic carbon content for deep-drilled sediment cores (~ 30m) and (2) preliminary results on GHG production (methane and CO2) rates measured over 6 month. First results show that (1) GHG production is higher for inundated terrestrial sediments than for inundated lagoon sediments and (2) increasing salinity is favoring carbon dioxide production while methane production is low. In conclusion newly formed thermokarst lagoons, if upscaled to the thermokarst affected shorelines, are likely produce a significant amount of GHG under our experiment set-up.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Melnikov Permafrost Institute (MPI)
    In:  EPIC3Russian Conference with International Participation on the Occasion of the 60th Anniversary of the Melnikov Permafrost Institute (MPI), Yakutsk, Russia, 2020-09-28-2020-09-30Yakutsk, Russia, Melnikov Permafrost Institute (MPI)
    Publication Date: 2022-03-11
    Description: Since 1994, permafrost deposits of the Siberian Yedoma region have been in the focus of the joint Russian-German scientific cooperation in terrestrial Polar research (Figure 1). These studies focused on cryostratigraphic, geochemical, geochronological, and paleontological characteristics at more than 25 individual study sites of the late Pleistocene Yedoma Ice Complex in Siberia and provided a detailed insight into the paleoenvironments and paleoclimate for the westernmost part of Beringia. The multidisciplinary investigations resulted in new ideas and discussions in the ongoing scientific debate on the origin of Yedoma Ice Complex and the main periglacial processes involved in its formation (1,2,3). The Yedoma Ice Complex is an ice-rich type of permafrost deposit widely distributed across Beringia. The Ice Complex aggradation is mainly controlled by the growth of syngenetic ice wedge polygons contributing up to 60 vol% of the entire formation. The clastic sedimentation of ice-oversaturated Yedoma deposits with considerable organic matter content is further controlled by local conditions such as source rocks and periglacial weathering processes, paleotopography, and temporary surface stabilization with autochthonous peat growth and soil formation. Key processes include alluvial, fluvial, and niveo-aeolian transport (4) as well as accumulation in ponding waters and continued in-situ frost weathering over millennial time-scales. Important post-depositional processes affecting Yedoma deposits are solifluction, cryoturbation, and pedogenesis. Major joint Russian-German field studies were conducted on Taymyr Peninsula (5,6,7,8,9,10,11), along the western and central Laptev Sea coasts (12,13,14,15,16,17,18), in the Lena Delta (19,20,21,22), on islands of the New Siberian Archipelago (23,24,25,26,27,28), and the adjacent mainland (29). Further study sites were conducted in the Kolyma Lowland (30), the Yana Highlands (31,32), in the foothills of the Verkhoyan Mountains (33,34,35,36), and in Central Yakutia (37). Comprehensive sampling and further analytical work included not only the Yedoma Ice Complex itself but also included its stratigraphic context of older underlying sequences and younger overlying deposits. The latter often are subaerial or subaquatic deposits associated with late-Glacial to Holocene thermokarst dynamics that led to Yedoma degradation during the deglacial and Holocene warming of these regions (38,39,40). Figure 1: Joint Russian-German fieldwork sites in NE Siberia labeled with the year of expedition. Besides geomorphological and cryolithological studies, extensive paleo-ecological investigations were carried out on zoological (41,42,43,44,45) and botanic fossils (46,47,48,49,50,51) to derive quantitative and qualitative reconstructions late Pleistocene Beringian environments and climate conditions. New methods in geochronology were also tested (52,53,54,55). In addition to the sedimentary components of the frozen deposits, segregated ground ice and in particular the large syngenetic ice wedges of Yedoma Ice Complex were also studied as geochemical and stable isotope archives of paleoclimate (56,57,58, 59,60,61,62). In addition, a range of remote sensing methods in combination with GIS analyses (63,64,65) and geophysical surveys (66) were used for large-scale analyses of landscape changes associated with Yedoma Ice Complex degradation (67,68,69). In the last few years, an additional important focus has been on using modern biogeochemical methods of organic matter analysis to characterize the frozen organic matter in Yedoma Ice Complex deposits and for permafrost carbon pool calculations (70, 71,72,73,74,75,76,77) as well as microbiological studies (78) and genetic studies on fossil DNA (79,80). The rich body of scientific data and literature produced in Russian-German co-authorship within the more than 25 years of joint research on Yedoma Ice Complex represents an important cornerstone for understanding the Late Quaternary evolution of Siberian Yedoma regions, its role in the Earth System, and its feedbacks with climate and ecosystems. References 1.Schirrmeister, L., Dietze, E., Matthes, H., Grosse, G., Strauss, J., Laboor, S., Ulrich, M., Kienast, F., and Wetterich, S. (2020) The genesis of Yedoma Ice Complex permafrost – grain-size endmember modeling analysis from Siberia and Alaska, E&G Quaternary Sci. J., 69, 33–53, doi: 10.5194/egqsj-69-33-2020. 2.Schirrmeister, L., Froese, D., Tumskoy, V., Grosse,G., Wetterich, S. (2013.) Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia. In: Elias S.A. (ed.) The Encyclopedia of Quaternary Science 2nd edition, vol. 3, pp. 542-552. Amsterdam: Elsevier. 3.Schirrmeister, L., Kunitsky, V.V., Grosse, G., Wetterich, S., Meyer, H., Schwamborn, G., Babiy, O., Derevyagin, A.Y., and Siegert, C.: Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on North-East Siberian Arctic coastal lowlands and islands - a review. Quaternary International 241, 3-25, doi: 10.1016/j.quaint.2010.04.004, 2011. 4.Kunitsky, V., Schirrmeister, L., Grosse, G., Kienast, F. (2002). Snow patches in nival landscapes and their role for the Ice Complex formation in the Laptev Sea coastal lowlands, Polarforschung, 70, 53-67, doi:10.2312/polarforschung.70.53. 5.Andreev, A. , Siegert, C. , Klimanov, V. A. , Derevyagin, A. Y. , Shilova, G. N. and Melles, M. (2002) Late Pleistocene and Holocene vegetation and climate changes in the Taymyr lowland, Northern Siberia Quaternary research, 57, pp. 138-150 . 6.Andreev, A. , Tarasov, P. E. , Siegert, C. , Ebel, T. , Klimanov, V. A. , Melles, M. , Bobrov, A. A. , Derevyagin, A. Y. , Lubinski, D. J. and Hubberten, H. W. (2003) Vegetation and climate changes on the northern Taymyr, Russia during the Upper Pleistocene and Holocene reconstructed from pollen records, Boreas, 32 (3), pp. 484-505 . 7.Chizhov, A. B. , Derevyagin, A. Y. , Simonov, E. F. , Hubberten, H. W. and Siegert, C. (1997) Isotopic composition of ground ice at the Labaz Lake region (Taymyr). Kriosfera Zemlii (Earth Cryoshere), 1, No 3, pp. 79-84 . (in Russian), 8.Derevyagin, A.Yu., Chizhov, A.B., Brezgunov, V.S., Siegert, C., Hubberten, H.-W., 1999.Isotopic composition of ice wedges of Cape Sabler (Lake Taymyr). Kriosfera Zemlii (Earth Cryosphere) 3/3, 41-49 (in Russian). 9.Kienast, F., Siegert, C., Dereviagin, A., Mai, H.D. Climatic implications of Late Quaternary plant macrofossil assemblages from the Taymyr Peninsula, Siberia, Global and Planetary Change, Volume 31, Issues 1–4, 265-281, 2001, https://doi.org/10.1016/S0921-8181(01)00124-2. 10.Kienel, U. , Siegert, C. and Hahne, J. (1999) Late Quarternary paeloenvironmental reconstruction from a permafrost sequence (Northsiberian Lowland, SE Taymyr Peninsula) - a multidisciplinary case study, Boreas, 28 (1), pp. 181-193 . 11.Siegert C., Derevyagin A.Y., Shilova G.N., Hermichen WD., Hiller A. (1999) Paleoclimatic Indicators from Permafrost Sequences in the Eastern Taymyr Lowland. In: Kassens H. et al. (eds) Land-Ocean Systems in the Siberian Arctic. Springer, Berlin, Heidelberg. 12.Bobrov, A.A., Müller, S., Chizhikova, N.A., Schirrmeister, L., Andreev, A.A.(2009).Testate Amoebae in Late Quaternary Sediments of the Cape Mamontov Klyk (Yakutia), Biology Bulletin, 36(4), 363-372. 13.Schirrmeister, L., Grosse, G., Kunitsky, V., Magens, D., Meyer, H., Dereviagin, A., Kuznetsova, T., Andreev, A., Babiy, O., Kienast, F., Grigoriev, M., Overduin, P.P., and Preusser, F.: Periglacial landscape evolution and environmental changes of Arctic lowland areas for the last 60,000 years (Western Laptev Sea coast, Cape Mamontov Klyk), Polar Research, 27(2), 249-272, doi: 10.1111/j.1751-8369.2008.00067.x, 2008. 14.Winterfeld, M., Schirrmeister, L., Grigoriev, M., Kunitsky, V.V., Andreev, A., and Overduin, P.P.: Permafrost and Landscape Dynamics during the Late Pleistocene, Western Laptev Sea Shelf, Siberia, Boreas 40(4), 697–713, doi: 10.1111/j.1502-3885.2011.00203.x, 2011. 15.Siegert, C., Schirrmeister, L., and Babiy, O.: The sedimentological, mineralogical and geochemical composition of late Pleistocene deposits from the ice complex on the Bykovsky peninsula, northern Siberia, Polarforschung, 70, 2000, 3-11, doi: 10.2312/polarforschung.70.3, 2002. 16.Schirrmeister, L., Siegert, C., Kuznetsova, T., Kuzmina, S., Andreev, A.A., Kienast, F., Meyer, H., and Bobrov, A.A.: Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia, Quaternary International, 89, 97-118, doi: 10.1016/S1040-6182(01)00083-0, 2002. 17.Schirrmeister, L., Siegert, C., Kunitzky, V.V., Grootes, P.M., and Erlenkeuser, H.: Late Quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea Region in northern Siberia, International Journal of Earth Sciences, 91, 154-167, doi: 10.1007/s005310100205, 2002. 18.Schirrmeister, L., Schwamborn, G., Overduin, P.P., Strauss, J., Fuchs, M.C., Grigoriev, M., Yakshina, I., Rethemeyer, J., Dietze, E., and Wetterich, S.: Yedoma Ice Complex of the Buor Khaya Peninsula (southern Laptev Sea), Biogeosciences 14, 1261-1283, doi: 10.5194/bg-14-1261-2017, 2017. 19.Schirrmeister, L., Kunitsky, V.V., Grosse, G., Schwamborn, G., Andreev, A.A., Meyer, H., Kuznetsova, T., Bobrov, A., and Oezen, D.: Late Quaternary history of the accumulation plain north of the Chekanovsky Ridge (Lena Delta, Russia) - a multidisciplinary approach, Polar Geography, 27(4), 277-319, doi: 10.1080/789610225, 2003. 20.Schirrmeister, L., Grosse, G. Schnelle, M., Fuchs, M., Krbetschek, M., Ulrich, M., Kunitsky, V., Grigoriev, M., Andreev, A. Kienast, F., Meyer, H., Klimova, I., Babiy, O., Bobrov, A., Wetterich, S., and Schwamborn, G.: Late Quaternary paleoenvironmental records from the western Lena Delta, Arctic Siberia, Palaeogeography, Palaeoclimatology, Palaeoecology 299, 175–196, doi: 10.1016/j.quascirev.2009.11.017, 2011. 21.Schwamborn, G., Rachold, V., and Grigoriev, M.N.: Late Quaternary sedimentation history of the Lena Delta, Quaternary International 89, 119–134, doi: 10.1016/S1040-6182(01)00084-2, 2002. 22.Wetterich, S., Kuzmina, S., Andreev, A.A., Kienast, F., Meyer, H., Schirrmeister, L., Kuznetsova, T., and Sierralta, M.: Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia, Quaternary Science Reviews, 27, 1523-1540, doi: 10.1016/j.quascirev.2008.04.007, 2008. 23.Andreev, A.A., Grosse, G., Schirrmeister, L., Kuzmina, S.A., Novenko, E.Yu., Bobrov, A.A., Tarasov, P. E., Kuznetsova, T.V., Krbetschek, M., Meyer, H., and Kunitsky, V.V.: Late Saalian and Eemian palaeoenvironmental history of the Bol'shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia), Boreas 33(4), 319-348, doi:10.1080/03009480410001974, 2004. 24.Andreev, A., Grosse, G., Schirrmeister, L., Kuznetsova, T.V., Kuzmina, S.A., Bobrov, A.A., Tarasov, P.E., Novenko, E.Yu., Meyer, H., Derevyagin, A.Yu., Kienast, F., Bryantseva, A., and Kunitsky, V.V.: Weichselian and Holocene palaeoenvironmental history of the Bol’shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia, Boreas 38(1), 72–110, doi: 10.1111/j.1502-3885.2008.00039.x, 2009. 25.Wetterich, S., Rudaya, N., Meyer, H., Opel, T., and Schirrmeister, L.: Last Glacial Maximum records in permafrost of the East Siberian Arctic, Quaternary Science Reviews 30, 3139-3151, doi: 10.1016/j.quascirev.2011.07.020, 2011. 26.Wetterich, S., Rudaya, N., Andreev, A.A., Opel, T., Schirrmeister, L., Meyer, H., and Tumskoy, V.: Ice Complex formation in arctic East Siberia during the MIS3 Interstadial, Quaternary Science Reviews 84: 39-55, doi:. 10.1016/j.quascirev.2013.11.009, 2014. 27.Wetterich, S.; Tumskoy:V.E., Rudaya, N., Kuznetsov, V., Maksimov, F., Opel T. , Meyer H., Andreev, A.A., Schirrmeister, L (2016) Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic). Quaternary Science Reviews, 147:298-31, doi.org/10.1016/j.quascirev.2015.11.016. 28.Wetterich, S., Rudaya, N., Kuznetsov V., Maksimov, F., T. Opel, Meyer, H., Guenther, F., Bobrov, A., Raschke, E., Zimmermann, H., Strauss, J., Fuchs, M.C., Schirrmeister, L. (2019) Recurrent Ice Complex formation in arctic eastern Siberia since about 200 ka. Quaternary Research 92 (2); 530-548, doi.org/10.1017/qua.2019.6. 29.Wetterich, S., Schirrmeister, L., Andreev A. A., Pudenz, M., Plessen, B, Meyer, H., Kunitsky, V. V. (2009). Eemian and Late Glacial/Holocene palaeoenvironmental records from permafrost sequences at the Dmitry Laptev Strait (NE Siberia, Russia), Palaeogeography, Palaeoclimatology, Palaeoecology 279: 73-95 doi:10.1016/j.palaeo.2009.05.002. 30.Strauss, J., Schirrmeister, L., Wetterich, S., Borchers, A, and Davydov S.P.: Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia. GBC. 26: GB3003, doi: 10.1029/2011GB004104, 2012. 31.Ashastina, K., Schirrmeister, L., Fuchs M., and Kienast F.: Palaeoclimate characteristics in interior Siberia of MIS 6–2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands, Clim. Past, 13, 795–818, doi: 10.5194/cp-13-795-2017, 2017. 32.Kunitsky, V.V., Syromyatnikov, I.I., Schirrmeister, L., Skachkov, Yu.B., Grosse, G., Wetterich, S., and Grigoriev, M.N.: Ice-rich permafrost and thermal denudation in the Kirgillyakh area, Kriosfera Zemli. 17(1), 56-68, 2013 (in Russian). 33.Popp, S., Diekmann,B., Meyer, H., Siegert, C.,Syromyatnikov, I., Hubberten, H.-W. Palaeoclimate Signals as Inferred from Stable-isotope Composition of Ground Ice in the Verkhoyansk Foreland, Central Yakutia. Permafrost and Periglac. Process. 17: 119–132 (2006) DOI: 10.1002/ppp.556 34.Popp, S., Belolyubsky, I., Lehmkuhl, F., Prokopiev, A., Siegert, C., Spektor, V., Stauch, G., Diekmann,B. Sediment provenance of late Quaternary morainic, fluvialand loess-like deposits in the southwestern VerkhoyanskMountains (eastern Siberia) and implications for regionalpalaeoenvironmental reconstructions. Geol. J.42: 477–497 (2007), DOI: 10.1002/gj.1088 35.Siegert, C. , Sergeyenko, A. I. and Schirrmeister, L. (2017) Late Quaternary Deposits of the Northern Verkhoyansk Mountains: Geochronology and Questions of their Genesis (in Russian), Bulletin of the Commission for Study of the Quaternary = БЮЛЛЕТЕНЬ КОМИССИИ ПО ИЗУЧЕНИЮ ЧЕТВЕРТИЧНОГО ПЕРИОДА, 75 , pp. 100-112 . 36.Siegert, C. , Stauch, G. , Lehmkuhl, F. , Sergeyenko, A. I. , Diekmann, B. , Popp, S. and Belolyubsky, I. N. (2007) Development of glaciation in the Verkhoyansk Range and its foreland during the Pleistocene: Results of new investigations., Regionalnaya Geologiya i Metallogeniya (Regional Geology and Metallogeny), No. 30-31(in Russian)., 222 . 37.Ulrich, M., Morgenstern, A., Günther, F., Reiss, D. Bauch, K. E., Hauber, E., Rössler, S. and Schirrmeister, L. (2010) Thermokarst in Siberian ice-rich permafrost: Comparison to asymmetric scalloped depressions on Mars, Journal of Geophysical Research, 115, E10009 . doi:10.1029/2010JE003640 , 38.Morgenstern, A. , Grosse, G. , Günther, F. , Fedorova, I. and Schirrmeister, L. (2011): Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. The Cryosphere, 5(4), 849–867, doi:10.5194/tc-5-849-2011. 39.Morgenstern, A. , Ulrich, M. , Günther, F. , Roessler, S. , Fedorova, I. V. , Rudaya, N. A. , Wetterich, S. , Boike, J. and Schirrmeister, L. (2013). Evolution of thermokarst in East Siberian ice-rich permafrost: A case study, Geomorphology, 201 , 363-379. doi:10.1016/j.geomorph.2013.07.011 40.Biskaborn, B. , Herzschuh, U. , Bolshiyanov, D. Y. , Schwamborn, G. and Diekmann, B. (2013) Thermokarst Processes and Depositional Events in a Tundra Lake, Northeastern Siberia, Permafrost and Periglac. Process.24: 160–174 doi:https://doi.org/10.1002/ppp.1769, 41.Kuznetsova, T. V. , Sulerzhitsky, L. D. , Andreev, A. , Siegert, C. , Schirrmeister, L. and Hubberten, H. W. (2003) Influence of Late Quaternary paleoenvironmental conditions on the distribution of mammals fauna in the Laptev Sea region, Occasional Papers in Earth Sciences, 5 , pp. 58-60 . 42.Kuznetsova T.V., Tumskoy V.E., Schirrmeister L., Wetterich S., (2019.) Paleozoological characteristics of the Late Neo-Pleistocene - Holocene sediments of Bykovsky Peninsula, Northern Yakutia (Палеозоологическая характеристика поздненеоплейстоценовых – голоценовых отложений Быковского Полуострова (Северная Якутия). Zoological Journal 98(11), 1268-1290. Special issue in honor of Andrey Sher. (in Russian) doi: 10.1134/S0044513419110102. 43.Bobrov, A. A. , Andreev, A. , Schirrmeister, L. and Siegert, C. (2004) Testate amoebae (Protozoa: Testacea) as bioindicators in the Late Quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia, Palaeogeography palaeoclimatology palaeoecology, 209 , pp. 165-181 . doi:https://doi.org/10.1016/J.PALAEO.2004.02.012 44.Wetterich, S., Schirrmeister, L., Pietrzeniuk, E. (2005). Freshwater ostracodes in Quaternary permafrost deposits from the Siberian Arctic, Journal of Paleolimnology, 34, 363-376. doi:10.1007/s10933-005-5801-y 45.Müller, S., Bobrov, A. A., Schirrmeister, L., Andreev, A. A., Tarasov, P. E. (2009). Testate amoebae record from the Laptev Sea coast and its implication for the reconstruction of Late Pleistocene and Holocene environments in the Arctic Siberia, Palaeogeography, Palaeoclimatology, Palaeoecology 271(3-4), 301-315. doi:10.1016/j.palaeo.2008.11.003 46.Andreev, A.A., Schirrmeister, L., Siegert, C., Bobrov, A.A., Demske, D., Seiffert, M., Hubberten, H.-W. (2002). Paleoenvironmental changes in Northeastern Siberia during the Late Quaternary - evidence from pollen records of the Bykovsky Peninsula, Polarforschung, 70, 13-25, doi:10.2312/polarforschung.70.13. 47.Andreev, A.A.; Schirrmeister, L.; Tarasov , P.E.; Ganopolski , A.; Brovkin V.; Siegert, C.; Hubberten, H.-W. (2011). Vegetation and climate history in the Laptev Sea region (arctic Siberia) during Late Quaternary inferred from pollen records. Journal of Quaternary science reviews. 30, 2182-2199 doi:10.1016/j.quascirev.2010.12.026. 48.Kienast, F. , Schirrmeister, L. , Siegert, C. and Tarasov, P. (2005) Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage, Quaternary Research, 63 (3), pp. 283-300. doi:https://doi.org/10.1016/j.yqres.2005.01.003 , 49.Kienast, F., Tarasov, P., Schirrmeister, L., Grosse, G., Andreev, A.A. (2008). Continental climate in the East Siberian Arctic during the last interglacial: implications from palaeobotanical records, Global and Planetary Change, 60(3/4), 535-562. doi:10.1016/j.gloplacha.2007.07.004 50.Kienast, F., Wetterich, S., Kuzmina, S., Schirrmeister, L., Andrev, A., Tarasov, P., Nazarova, L., Kossler, A., Frolova, A., Kunitsky, V. V.(2011) Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the last interglacial. Quaternary Science Reviews 30: 2134-2159, doi:10.1016/j.quascirev.2010.11.024. 51.Palagushkina, O.V., Wetterich, S., Schirrmeister, L., Nazarova, L.B. (2017) Modern and fossil diatom assemblages from Bol'shoy Lyakhovsky Island (New Siberian Archipelago, Arctic Siberia). Contemporary Problems of Ecology, 10, (4), 380–394. doi: 10.1134/S1995425517040060. 52.Gilichinsky, D. A. , Nolte, E., Basilyan, A.E., Beer, J., Blinov, A., Lazarev, V., Kholodov, A., Meyer, H., Nikolsky, P.A., Schirrmeister, L., Tumskoy, V. (2007). Dating of syngenetic ice wedges in permafrost with 36Cl and 10Be, Quaternary science reviews. 26, 1547-1556. doi:10.1016/j.quascirev.2007.04.004 53.Blinov A.V., Beer J., Tikhomirov D.A., Schirrmeister L., Meyer H., Abramov A.A., Basylyan A.E., Nikolskiy P.A., Tumskoy V.E., Kholodov A.L., Gilichinsky D.A. (2009) Permafrost dating with the cosmogenic radionuclides ( Report 1) (= Датирование многолетнемерзлых пород с помощью космогенных радионуклидов (сообщение 1). Kriosfera Zemli 13,( 2), 3-15 (in Russian). 54.Blinov, A., Alfimov, V., Beer, J., Gilichinsky, D., Schirrmeister, L., Kholodov, A., Nikolskiy, P., Opel, T., Tikhomirov, D., Wetterich, S.(2009).36Cl/Cl ratio in ground ice of East Siberia and its application for chronometry, Geochemistry, Geophysics, Geosystems (G3). 10(1), doi: 10.1029/2009GC002548. 55.Schirrmeister, L., Oezen, D., Geyh, M.A. (2002). 230Th/U dating of frozen peat, Bol'shoy Lyakhovsky Island (North Siberia), Quaternary research, 57, 253-258. doi:10.1006/qres.2001.2306. 56.Meyer, H. , Derevyagin, A. Y. , Siegert, C. and Hubberten, H. W. (2002) Paleoclimate studies on Bykovsky Peninsula, North Siberia - hydrogen and oxygen isotopes in ground ice, Polarforschung 70:, pp. 37-51 . 57.Derevyagin, A. Y., Chizhov, A. , Meyer, H. , Opel, T. , Schirrmeister, L. and Wetterich, S. (2013). Isotopic composition of texture ices, Laptev Sea coast , Kriosfera Zemlii (Earth Cryosphere), XVII (3), pp. 27-34 (in Russian). 58.Meyer, H. , Derevyagin, A. Y. , Siegert, C. , Schirrmeister, L. and Hubberten, H. W. (2002) Paleoclimate reconstruction on Big Lyakhovsky Island, North Siberia - Hydrogen and oxygen isotopes in ice wedges, Permafrost and periglacial processes, 13 , pp. 91-105 . 59.Opel, T., Dereviagin, A., Meyer, H., Schirrmeister, L., Wetterich, S. (2010).Paleoclimatic information from stable water isotopes of Holocene ice wedges at the Dmitrii Laptev Strait (Northeast Siberia), Permafrost and Periglacial Processes. 22 (1), 84-100, doi:10.1002/ppp.667. 60.Opel, T., Wetterich, S., Meyer, H., Dereviagin, A.Yu., Fuchs, M.C., and Schirrmeister, L.: Ground-ice stable isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic (Oyogos Yar coast, Dmitry Laptev Strait). Clim. Past, 13, 587–611, 2017, doi: 10.5194/cp-13-587-2017, 2017. 61.Opel, T., Murton, J. B., Wetterich, S., Meyer, H., Ashastina, K., Günther, F., Grotheer, H., Mollenhauer, G., Danilov, P. P., Boeskorov, V., Savvinov, G. N., Schirrmeister, L. (2019) Past climate and continentality inferred from ice wedges at Batagay megaslump in the Northern Hemisphere's most continental region, Yana Highlands, interior Yakutia, Clim. Past, 15, 1443–1461, doi: 10.5194/cp-15-1443-2019. 62.Ulrich, M., Grosse, G., Strauss, J. and Schirrmeister, L. (2014): Quantifying wedge-ice volumes in yedoma and thermokarst basin deposits, Permafrost and Periglacial Processes 25, 151–161. doi:10.1002/ppp.1810. 63.Grosse, G., Schirrmeister, L., Siegert, C., Kunitsky, V.V., Slagoda, E.A., Andreev, A.A., and Dereviagyn, A.Y.: Geological and geomorphological evolution of a sedimentary periglacial landscape in Northeast Siberia during the Late Quaternary, Geomorphology, 86(1/2), 25-51, doi:10.1016/j.geomorph.2006.08.005, 2007. 64.Grosse, G., Schirrmeister, L., Kunitsky, V. V., Hubberten, H. -W. (2005). The Use of CORONA Images in Remote Sensing of Periglacial Geomorphology: An Illustration from the NE Siberian Coast, Permafrost and periglacial processes, 16, 163-172. doi:10.1002/ppp.509 65.Grosse, G., Robinson, J.E., Bryant, R., Taylor, M.D., Harper, W., DeMasi, A., Kyker-Snowman, E., Veremeeva, A., Schirrmeister, L., Harden, J. (2013). Distribution of late Pleistocene ice-rich syngenetic permafrost of the Yedoma Suite in east and central Siberia, Russia. U.S. Geological Survey Open File Report 2013-1078, 37p. 66.Schennen, S., Tronicke, J., Wetterich, S., Allroggen, N., Schwamborn, G., Schirrmeister, L. (2016) 3D GPR imaging of Ice Complex deposits in northern East Siberia, Geophysics 81(1), WA185-WA192, doi: 10.1190/GEO2015-0129.1. 67.Günther, F. , Overduin, P. P. , Yakshina, I. A. , Opel, T. , Baranskaya, A. V. and Grigoriev, M. N. (2015) Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction, The Cryosphere, 9 (1), pp. 151-178 . doi.org/10.5194/tc-9-151-2015 68.Günther, F. , Overduin, P. P. , Sandakov, A. V. , Grosse, G. and Grigoriev, M. N. (2013) Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region, Biogeosciences, 10 , pp. 4297-4318 . doi:https://doi.org/10.5194/bg-10-4297-2013 69.Overduin, P. P. , Strzelecki, M. C. , Grigoriev, M. N. , Couture, N. , Lantuit, H. , St-Hilaire-Gravel, D. , Günther, F. and Wetterich, S. (2013) Coastal changes in the Arctic, Geological Society of London Special Publication, 388 . doi:https://doi.org/10.1144/SP388.13 70.Strauss J., Schirrmeister L., Grosse G., Wetterich S., Ulrich M., Herzschuh U., H.-W.Hubberten (2013). The Deep Permafrost Carbon Pool of the Yedoma Region in Siberia and Alaska. GRL 40, 6165-6170. doi 10.1002/2013GL058088. 71.Strauss, J., Schirrmeister, L., Mangelsdorf, K., Eichhorn, L., Wetterich S., and Herzschuh U.: Organic matter quality of deep permafrost carbon - a study from Arctic Siberia. Biogeosciences, 12, 2227–2245, doi: 10.5194/bg-12-2227-2015, 2015. 72.Strauss,J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G., Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T., Schuur, E.A.G., Shmelev, D., Ulrich, M.,, Veremeeva, A. (2017). Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth-Science Reviews 172, 75-86, doi: 10.1016/j.earscirev.2017.07.007. 73.Stapel, J. G., L. Schirrmeister, P. P. Overduin, S. Wetterich, J. Strauss, B. Horsfield, and K. Mangelsdorf (2016), Microbial lipid signatures and substrate potential of organic matter in permafrost deposits - implications for future greenhouse gas production, J. Geophys. Res. Biogeosci., 121, doi: 10.1002/2016JG003483. 74.Stapel, J.G, Schwamborn, G., Schirrmeister, L., Horsfield, B. and Mangelsdorf, K. (2018) Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production. Biogeosciences, 15, 1969–1985, doi: 10.5194/bg-15-5423-2018. 75.Walz, J., Knoblauch, C., Tigges, R., Opel, T., Schirrmeister, L., and Pfeiffer, E.-M. (2018) Greenhouse gas production in degrading ice-rich permafrost deposits in northeast Siberia. Biogeosciences, 15, 5423–5436, doi: 10.5194/bg-2018-225. 76.Fuchs, M. , Grosse, G. , Strauss, J. , Günther, F. , Grigoriev, M. N. , Maximov, G. M. and Hugelius, G. (2018) Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia, Biogeosciences, 15 , pp. 953-971 . 77.Kusch, S., Winterfeld, M., Mollenhauer, G., Höfle, S.T., Schirrmeister, L., Schwamborn, G., and Rethemeyer, J. (2019) Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: Diversity, environmental controls, and implications for proxy applications. Organic Geochemistry 136, 103888, doi: 10.1016/j.orggeochem.2019.06.009. 78.Mitzscherling, J., Horn, F., Winterfeld, M., Mahler, L., Kallmeyer, J., Overduin, P.P., Schirrmeister, L., Winkel, M., Grigoriev, M.N., Wagner, D., Liebner, S. (2019) (6bial community composition and abundance after millennia of submarine permafrost warming. Biogeosciences, 16, 3941–3958, doi: 10.5194/bg-16-3941-2019. 79.Zimmermann, H.H., Raschke, E., Epp, L.S., Stoof-Leichsenring, K.R., Schirrmeister, L., Schwamborn, G., Herzschuh, U. (2017). The history of tree and shrub taxa on Bol’shoy Lyakhovsky Island (New Siberian Archipelago) since the last interglacial uncovered by sedimentary ancient DNA and pollen data. Genes 8(10), E273; doi: 10.3390/genes8100273. 80.Zimmermann, H.H., Raschke, E., Epp, L.S., Stoof-Leichsenring, K., Schwamborn, G., Schirrmeister, L., Overduin, P.P., Herzschuh, U. (2017) Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). Biogeosciences 14, 575-596, doi:10.5194/bg-14-575-2017
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-04
    Description: The degradation of ice-rich permafrost deposits has the potential to release large amounts of previously freeze-locked carbon (C) and nitrogen (N) with local implications, such as affecting riverine and near-shore ecosystems, but also global impacts such as the release of greenhouse gases into the atmosphere. Here, we study the rapid erosion of the up to 27.7 m high and 1,660 m long Sobo-Sise yedoma cliff in the Lena River Delta using a remote sensing-based time-series analysis covering 53 years and calculate the mean annual sediment as well as C and N release into the Lena River. We find that the Sobo-Sise yedoma cliff, which exposes ice-rich late Pleistocene to Holocene deposits, had a mean long-term (1965–2018) erosion rate of 9.1 m yr–1 with locally and temporally varying rates of up to 22.3 m yr–1. These rates are among the highest measured erosion rates for permafrost coastal and river shoreline stretches. The fluvio-thermal erosion led to the release of substantial amounts of C (soil organic carbon and dissolved organic carbon) and N to the river system. On average, currently at least 5.2 × 106 kg organic C and 0.4 × 106 kg N were eroded annually (2015–2018) into the Lena River. The observed sediment and organic matter erosion was persistent over the observation period also due to the specific configuration of river flow direction and cliff shore orientation. Our observations highlight the importance to further study rapid fluvio-thermal erosion processes in the permafrost region, also because our study shows increasing erosion rates at Sobo-Sise Cliff in the most recent investigated time periods. The organic C and N transport from land to river and eventually to the Arctic Ocean from this and similar settings may have severe implications on the biogeochemistry and ecology of the near-shore zone of the Laptev Sea as well as for turnover and rapid release of old C and N to the atmosphere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Sciences
    In:  EPIC3Polar Regions, Climate Change and Society - 28th International Polar Conference, Potsdam, 2022-05-02-2022-05-05Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Sciences
    Publication Date: 2022-10-04
    Description: Climate warming is particularly pronounced in the Arctic with temperatures rising twice as much as in the rest of the world. It seems natural that this warming has profound effects on the speed of erosion of Arctic coasts, since the majority consists of permafrost, composed of unlithified material and hold together by ice. Permafrost stores approximately 1307 Gt of carbon, which is almost 60 % more than currently being contained in the atmosphere. Understanding the main drivers and dynamics of permafrost coastal erosion is of global relevance, especially since floods and erosion are both projected to intensify. However, the assessment of the impacts of climate warming on Arctic coasts is impaired by little data availability. We reviewed relevant scientific literature on changing dynamics of Arctic coast, potential drivers of these changes and the impacts on the human and natural environment. We provide a comprehensive overview over the state of the art and share our thoughts on how we envision potential pathways of future Arctic coastal research. We found that the overwhelming majority of all studied Arctic coasts is erosive and that in most cases erosion rates per year are increasing, threatening coastal settlements, infrastructure, cultural sites and archaeological remains. The impacts on the natural environment are also manifold and reach from changing sediment fluxes which limit light availability in the water column to a higher input of carbon and nutrients into the nearshore zone with the potential to influence food chains.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...