ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-11-29
    Description: Abstract: A sedimentary sequence of fluvial deposits preserved in the Corchia Cave (Alpi Apuane) provides new chronological constraints for the evolution of the cave system and the timing and rate of uplift of this sector of the Alpi Apuane since the late Pliocene. Supported by magnetostratigraphic analysis performed on fine-grained fluvial deposits, and by radiometric dating of speleothems, we suggest that the deposition of fluvial sediments occurred between ~1.6–1.2 Ma. This implies that the host volume of rock was already located close to the local base level, adding key information about the recent tectonic evolution of the Alpi Apuane. A few before ~1 Ma, an erosive phase occurred due to the base-level lowering, followed by continuous speleothem deposition since at least 0.97 Ma. From that time, Monte Corchia uplifted at a maximum rate of ~0.5 mm/year, which is consistent with isostatic uplift mainly driven by erosional unloading. The petrographical study of the fluvial deposits highlights the presence of material derived from the erosion of rocks that today are absent in the cave’s catchment area, suggesting a different surface morphology during the Early Pleistocene. This study highlights the potential of cave sediments as archives for reconstructing the uplift history of mountain ranges.
    Description: Published
    Description: 65
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: geochronology; ; karst ; magnetostratigraphy; ; Corchia Cave ; Alpi Apuane
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-29
    Description: Identifying the hydrological and environmental response of the European Alpine region to different combinations of climate boundary conditions is crucial to advance the reliability of predictive climate models and thus shape climate adaptation policies that will impact millions of people in seven countries. Here we present a high-resolution multiproxy speleothem record (stable oxygen and carbon isotope ratios, petrography and magnetic properties) from Rio Martino Cave (Piedmont, Southern Alps, Italy), which covers the first part of the Penultimate Glacial (early MIS 6, 182e157 ka). During early MIS 6, the combination of high climatic precession and obliquity amplified the peak in Northern Hemisphere (NH) summer insolation intensity at ca. 174 ka to almost interglacial levels, leading to northward migration of the Intertropical Convergence Zone and the enhancement of the boreal monsoon system. At orbital scale, the hydroclimatic record from Rio Martino closely follows the precession pattern, and shows a wet interstadial phase between 180 and 170 ka, peaking at the precession minimum, characterized by glacial retreat and by the likely development of soils and vegetation up to 1900e2000 m a.s.l. in this alpine sector. This phase can be traced across the Southern Alps, and corresponds to pluvial conditions inferred from Western Mediterranean records, and to the interval of deposition of the cold Sapropel S6 in the eastern Mediterranean. We suggest that the interaction between an intensified northwesterly cold flow (relating to increased ice volume under glacial conditions), and the relatively warm waters of the NW Mediterranean (due to the peculiar atmospheric configuration occurring at the precession minimum) strongly enhanced the autumn cyclogenesis in the Northern Tyrrhenian Sea, fuelling intense precipitation to reach the Southern Alps. The Rio Martino record also shows a prominent sub-orbital variability, the overall structure of which is coherent with hemispheric changes in climate driven by cyclic perturbations of North Atlantic conditions related to the operation of the bipolar seesaw.
    Description: Published
    Description: 106856
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: speleothem ; Alps ; Penultimate glacial ; speleothems magnetic properties
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-26
    Description: Integrating palaeoclimatological proxies and historical records, which is necessary to achieve a more complete understanding of climate impacts on past societies, is a challenging task, often leading to unsatisfactory and even contradictory conclusions. This has until recently been the case for Italy, the heart of the Roman Empire, during the transition between Antiquity and the Middle Ages. In this paper, we present new high-resolution speleothem data from the Apuan Alps (Central Italy). The data document a period of very wet conditions in the sixth c. AD, probably related to synoptic atmospheric conditions similar to a negative phase of the North Atlantic Oscillation. For this century, there also exist a significant number of historical records of extreme hydroclimatic events, previously discarded as anecdotal. We show that this varied evidence reflects the increased frequency of floods and extreme rainfall events in Central and Northern Italy at the time. Moreover, we also show that these unusual hydroclimatic conditions overlapped with the increased presence of "water miracles" in Italian hagiographical accounts and social imagination. The miracles, performed by local Church leaders, strengthened the already growing authority of holy bishops and monks in Italian society during the crucial centuries that followed the "Fall of the Roman Empire". Thus, the combination of natural and historical data allows us to show the degree to which the impact of climate variability on historical societies is determined not by the nature of the climatic phenomena per se, but by the culture and the structure of the society that experienced it.
    Description: Published
    Description: 25
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: Precipitation ; Roman Empire ; miracles ; Social feedbacks ; Cultural change ; climate change
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-29
    Description: Disentangling the effects of climate and human impact on the long-term evolution of the Earth Critical Zone is crucial to understand the array of its potential responses to the ongoing Global Change. This task requires natural archives from which local information about soil and vegetation can be linked directly to climate parameters. Here we present a high-resolution, well-dated, speleothem multiproxy record from the SW Italian Alps, spanning the last ~10,000 years of the present interglacial (Holocene). We correlate magnetic properties and the carbon stable isotope ratio to soil stability and pedogenesis, whereas the oxygen isotope composition is interpreted as primarily related to precipitation amount, modulated at different timescales by changes in precipitation source and seasonality. During the 9.7-2.8 ka period, when anthropic pressure over the catchment was scarce, intervals of enhanced soil erosion are related to climate-driven vegetation contractions and occurred during drier periods. Immediately following the onset of the Iron Age (ca. 2.8 ka), by contrast, periods of enhanced soil erosion coincided with a wetter climate. We propose that the observed changes in the soil response to climate forcing were related to early anthropogenic manipulations of Earth's surface, which made the ECZ more sensitive to climate oscillations.
    Description: University of Pisa (Fondi di Ateneo assigned to ER and GZ)Australian Research Council Discovery Project scheme (grant number DP160102969, assigned to RND, JH, GZ and ER)the National Geographic Society (CP-073ER-17)
    Description: Published
    Description: id 17829
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: speleothem ; magnetism ; stable isotope geochemistry ; Earth Critical Zone ; Anthropocene ; Alps ; the effects of climate and human impact
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    NATURE PUBLISHING GROUP
    In:  EPIC3Nature Geoscience, NATURE PUBLISHING GROUP, 14(11), pp. 819-826, ISSN: 1752-0894
    Publication Date: 2022-02-15
    Description: Changes in the magnitude of millennial-scale climate variability (MCV) during the Late Pleistocene occur as a function of changing background climate state over tens of thousands of years, an indirect consequence of slowly varying incoming solar radiation associated with changes in Earth’s orbit. However, whether astronomical forcing can stimulate MCV directly (without a change in the background state) remains to be determined. Here we use a comprehensive fully coupled climate model to demonstrate that orbitally driven insolation changes alone can give rise to spontaneous millennial-scale climate oscillations under intermediate glacial conditions. Our results demonstrate that an abrupt transition from warm interstadial to cold stadial conditions can be triggered directly by a precession-controlled increase in low-latitude boreal summer insolation and/or an obliquity-controlled decrease in high-latitude mean annual insolation, by modulating North Atlantic low-latitude hydroclimate and/or high-latitude sea ice–ocean–atmosphere interactions, respectively. Furthermore, contrasting insolation effects over the tropical versus subpolar North Atlantic, exerted by obliquity or precession, result in an oscillatory climate regime, even within an otherwise stable climate. With additional sensitivity experiments under different glacial–interglacial climate backgrounds, we synthesize a coherent theoretical framework for climate stability, elaborating the direct and indirect (dual) control by Earth’s orbital cycles on millennial-scale climate variability during the Pleistocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...