ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The DFG funded DeepEarthshape project within the SPP1803 EarthShape (second phase) combines several geoscientific methods and approaches to study the weathering zone in detail in dependence of climate conditions. Projects of the first phase have shown that the weathering zone is much deeper than expected, so that the weathering front was never encountered in the excavated soil pits. At depth of 1 – 2 m appreciable amounts of microbial biomass and DNA counts were encountered. It was further found that bacteria and archaea colonizing rock surfaces are close relatives to those from deeper soil zones. Because we do not know a) the depth of weathering; b) the process advancing it; c) whether this advance is driven by water, gases, and/or biological activity and concentrated along faults; d) whether this zone presents a habitat and interacts with the surface biosphere, we have designed a drilling campaign at all four study sites for joint geochemical, biogeochemical and microbiological exploration and a geophysical campaign for imaging the depth and physical properties of the critical zone. The principle hypotheses of the DeepEarthshape projects are: 1) The advance of the weathering front at depth is a recent process that is linked to climate and coupled with erosion at the surface through a biogeochemical feedback 2) Microbial activity in the deep regolith that advances weathering is fuelled by young organic matter. The four study sites are distributed along the coast of Chile to have a similar geological setting at one hand but different climatic conditions. Here we present the logging data of the first geophysical borehole survey which took place at Santa Gracia, 40 km NE of La Serena (Coquimbo Region, Chile). The data were acquired on the 2nd of April 2019 between . The borehole logging was conducted by COMPROBE. The vertical borehole reached down to 87.2 m depth and had a diameter (PQ) of 83.5 mm.
    Description: Other
    Description: The Acoustic Televiewer data are freely accessible now in .dlis and PDF formats. The original data files are embargoed until the 30 June 2022.
    Keywords: geophysical borehole logging ; televiewer ; Full seismic wave fields ; electrical resistivity ; gamma ray ; spontaneous potential ; single point resistance ; seismic p wave velocities ; seismic s wave velocities ; In Situ/Laboratory Instruments 〉 Recorders/Loggers 〉 WELL LOGGING TOOLS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-04
    Description: Abstract
    Description: The West Bohemian Massif as part of the geodynamically active European Cenozoic Rift System is characterised by ongoing magmatic processes in the intra-continental lithospheric mantle. A series of phenomena such as massive degassing of CO2 and repeated earthquake swarms make the Eger Rift a unique target area for European intra-continental geo-scientific research. The ICDP project "Drilling the Eger Rift" was funded to study the field of earthquake-fluid-rock-biosphere interaction. In the framework of this ICDP project, magnetotelluric (MT) experiments have been conducted to image the subsurface distribution of the electrical conductivity down to depths of several tens of kilometres as the electrical conductivity is particularly sensitive to the presence of high-conductive phases such as aqueous fluids, partial melts or metallic compounds. Based on recent MT experiments in 2015/2016, Munoz et al. (2018) presented 2D images of the electrical conductivity structure along a NS profile across the Eger Rift. It reveals a conductive channel at the earthquake swarm region that extend from the lower crust to the surface forming a pathway for fluids up to the region of the mofettes. A second conductive channel is present in the south of the model. Due to the given station setup along a profile, the resulting 2D inversion allows ambiguous interpretations of this feature. As 3D inversion is required to distinguish between the different interpretations, we conducted another MT field experiment at the end of 2018. This data publication (10.5880/GIPP-MT. 201810 .1) encompasses a detailed report in pdf format with a description of the project, information on the experimental setup, data collection, instrumentation used, recording configuration and data quality. The folder structure and content of the data repository are described in detail in Ritter et al. (2019). Time-series data are provided in EMERALD format (Ritter et al., 2015).
    Description: Other
    Description: The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz-potsdam.de/gipp for more information.
    Keywords: Magnetotelluric ; West Bohemian Massif ; Eger Rift ; ICDP project “Drilling the Eger Rift” ; Conductive channel ; Fluids ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 GEOMAGNETIC INDUCTION ; In Situ/Laboratory Instruments 〉 Probes
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-04
    Description: Abstract
    Description: Magnetotellurics (MT) is a geophysical deep sounding tool that can help decipher the deep hydrology and geology of Antarctica, in concert with more established and already applied geophysical methods, such as seismology, gravity, and magnetics. Electrical conductivity is an important physical parameter to identify properties of rocks and, perhaps more importantly, constituents within, such as fluids or mineralisation.The unique conditions of Antarctica, which is largely covered with ice cause technical issues, particularly with the electric field recordings, as highly resistive snow and ice at surface of Antarctica hampers contact of the E-field sensors (telluric electrodes) with the ground. The project was a feasibility study to address this principal problem and to test modified MT equipment of the Geophysical Instrument Pool Potsdam (GIPP) in the vicinity of the Neumayer Station III (NMIII) on the Ekström Ice Shelfon.This data publication encompasses a detailed report in .pdf format with a description of the project, information on the experimental setup, data collection, instrumentation used, recording configuration and data quality. The folder structure and content of the data repository are described in detail in Ritter et al. (2019). Time-series data are provided in EMERALD format (Ritter et al., 2015).
    Description: Other
    Description: The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz-potsdam.de/gipp for more information.
    Keywords: Magnetotelluric ; Feasibility Study ; Antarctica ; Ekström Ice Shelf ; Grunehogna craton ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 GEOMAGNETIC INDUCTION ; In Situ/Laboratory Instruments 〉 Probes
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...