ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
  • 1
    facet.materialart.
    Unknown
    In:  Stable Isotopes in Tree Rings | Tree Physiology book series
    Publication Date: 2022-08-19
    Description: The tree-ring stable C, O and H isotope compositions have proven valuable for examining past changes in the environment and predicting forest responses to environmental change. However, we have not yet recovered the full potential of this archive, partly due to a lack understanding of fractionation processes resulting from methodological constraints. With better understanding of the biochemical and tree physiological processes that lead to differences between the isotopic compositions of primary photosynthates and the isotopic compositions of substrates deposited in stem xylem, more reliable and accurate reconstructions could be obtained. Furthermore, by extending isotopic analysis of tree-ring cellulose to intra-molecular level, more information could be obtained on changing climate, tree metabolism or ecophysiology. This chapter presents newer methods in isotope research that have become available or show high future potential for fully utilising the wealth of information available in tree-rings. These include compound-specific analysis of sugars and cyclitols, high spatial resolution analysis of tree rings with UV-laser, and position-specific isotope analysis of cellulose. The aim is to provide the reader with understanding of the advantages and of the current challenges connected with the use of these methods for stable isotope tree-ring research.
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: This is the first Europe-wide comprehensive assessment of the climatological and physiological information recorded by hydrogen isotope ratios in tree-ring cellulose (δ2Hc) based on a unique collection of annually resolved 100-year tree-ring records of two genera (Pinus and Quercus) from 17 sites (36°N to 68°N). We observed that the high-frequency climate signals in the δ2Hc chronologies were weaker than those recorded in carbon (δ13Cc) and oxygen isotope signals (δ18Oc) but similar to the tree-ring width ones (TRW). The δ2Hc climate signal strength varied across the continent and was stronger and more consistent for Pinus than for Quercus. For both genera, years with extremely dry summer conditions caused a significant 2H-enrichment in tree-ring cellulose. The δ2Hc inter-annual variability was strongly site-specific, as a result of the imprinting of climate and hydrology, but also physiological mechanisms and tree growth. To differentiate between environmental and physiological signals in δ2Hc, we investigated its relationships with δ18Oc and TRW. We found significant negative relationships between δ2Hc and TRW (7 sites), and positive ones between δ2Hc and δ18Oc (10 sites). The strength of these relationships was nonlinearly related to temperature and precipitation. Mechanistic δ2Hc models performed well for both genera at continental scale simulating average values, but they failed on capturing year-to-year δ2Hc variations. Our results suggest that the information recorded by δ2Hc is significantly different from that of δ18Oc, and has a stronger physiological component independent from climate, possibly related to the use of carbohydrate reserves for growth. Advancements in the understanding of 2H-fractionations and their relationships with climate, physiology, and species-specific traits are needed to improve the modelling and interpretation accuracy of δ2Hc. Such advancements could lead to new insights into trees' carbon allocation mechanisms, and responses to abiotic and biotic stress conditions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...