ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (3)
  • 1
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pold, G., Baillargeon, N., Lepe, A., Rastetter, E. B., & Sistla, S. A. Warming effects on arctic tundra biogeochemistry are limited but habitat-dependent: a meta-analysis. Ecosphere, 12(10), (2021): e03777, https://doi.org/10.1002/ecs2.3777.
    Description: Arctic tundra consists of diverse habitats that differ in dominant vegetation, soil moisture regimes, and relative importance of organic vs. inorganic nutrient cycling. The Arctic is also the most rapidly warming global area, with winter warming dominating. This warming is expected to have dramatic effects on tundra carbon and nutrient dynamics. We completed a meta-analysis of 166 experimental warming study papers to evaluate the hypotheses that warming changes tundra biogeochemical cycles in a habitat- and seasonally specific manner and that the carbon (C), nitrogen (N), and phosphorus (P) cycles will be differentially accelerated, leading to decoupling of elemental cycles. We found that nutrient availability and plant leaf stoichiometry responses to experimental warming were variable and overall weak, but that both gross primary productivity and the plant C pool tended to increase with growing season warming. The effects of winter warming on C fluxes did not extend into the growing season. Overall, although warming led to more consistent increases in C fluxes compared to N or P fluxes, evidence for decoupling of biogeochemical cycles is weak and any effect appears limited to heath habitats. However, data on many habitats are too sparse to be able to generalize how warming might decouple biogeochemical cycles, and too few year-round warming studies exist to ascertain whether the season under which warming occurs alters how ecosystems respond to warming. Coordinated field campaigns are necessary to more robustly document tundra habitat-specific responses to realistic climate warming scenarios in order to better understand the mechanisms driving this heterogeneity and identify the tundra habitats, communities, and soil pools most susceptible to warming.
    Description: Funding for this project was provided by NSF Signals in the Soil grant number 1841610 to SAS and ER. SAS and ER conceived of and acquired funding for the project. NB completed the literature search.
    Keywords: Arctic ; Biogeochemistry ; Climate change ; Experimental warming ; Meta-analysis ; Stoichiometry ; Tundra
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Domeignoz-Horta, L. A., Pold, G., Liu, X. A., Frey, S. D., Melillo, J. M., & DeAngelis, K. M. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 11(1), (2020): 3684, doi:10.1038/s41467-020-17502-z.
    Description: Empirical evidence for the response of soil carbon cycling to the combined effects of warming, drought and diversity loss is scarce. Microbial carbon use efficiency (CUE) plays a central role in regulating the flow of carbon through soil, yet how biotic and abiotic factors interact to drive it remains unclear. Here, we combine distinct community inocula (a biotic factor) with different temperature and moisture conditions (abiotic factors) to manipulate microbial diversity and community structure within a model soil. While community composition and diversity are the strongest predictors of CUE, abiotic factors modulated the relationship between diversity and CUE, with CUE being positively correlated with bacterial diversity only under high moisture. Altogether these results indicate that the diversity × ecosystem-function relationship can be impaired under non-favorable conditions in soils, and that to understand changes in soil C cycling we need to account for the multiple facets of global changes.
    Description: Funding for this project was provided by the Department of Energy grant DE-SC0016590 to K.M.D. and S.D.F., and an American Association of University Women Dissertation fellowship to G.P. We would also like to thank Stuart Grandy and Kevin Geyer for the fruitful discussions and Mary Waters, Courtney Bly and Ana Horta for their help with samples processing.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pold, G., Kwiatkowski, B. L., Rastetter, E. B., & Sistla, S. A. Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe-plant-soil model. Soil Biology & Biochemistry, 165, (2022): 108489, https://doi.org/10.1016/j.soilbio.2021.108489.
    Description: Requirements for biomass carbon (C), nitrogen (N), and phosphorus (P) constrain organism growth and are important agents for structuring ecosystems. Arctic tundra habitats are strongly nutrient limited as decomposition and recycling of nutrients are slowed by low temperature. Modeling interactions among these elemental cycles affords an opportunity to explore how disturbances such as climate change might differentially affect these nutrient cycles. Here we introduce a C–N–P-coupled version of the Stoichiometrically Coupled Acclimating Microbe-Plant-Soil (SCAMPS) model, “SCAMPS-CNP”, and a corresponding modified CN-only model, “SCAMPS-CN”. We compared how SCAMPS-CNP and the modified SCAMPS-CN models project a moderate (RCP 6.0) air warming scenario will impact tussock tundra nutrient availability and ecosystem C stocks. SCAMPS-CNP was characterized by larger SOM and smaller organism C stocks compared to SCAMPS-CN, and a greater reduction in ecosystem C stocks under warming. This difference can largely be attributed to a smaller microbial biomass in the CNP model, which, instead of being driven by direct costs of P acquisition, was driven by variable resource limitation due to asynchronous C, N, and P availability and demand. Warming facilitated a greater relative increase in plant and microbial biomass in SCAMPS-CNP, however, facilitated by increased extracellular enzyme pools and activity, which more than offset the metabolic costs associated with their production. Although the microbial community was able to flexibly adapt its stoichiometry and become more bacteria-like (N-rich) in both models, its stoichiometry deviated further from its target value in the CNP model because of the need to balance cellular NP ratio. Our results indicate that seasonality and asynchrony in resources affect predicted changes in ecosystem C storage under warming in these models, and therefore build on a growing body of literature indicating stoichiometry should be considered in carbon cycling projections.
    Description: This work was funded by the National Science Foundation Signals in the Soil grant number 1841610 to SAS and EBR.
    Keywords: Stoichiometry ; Modeling ; Microbial physiology ; Tundra ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...