ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-02-28
    Description: Leucititic rocks, K-foiditic in composition are volumetrically important in the Colli Albani (also known as Alban Hills) volcanic district (Central Italy) especially during the most explosive phases of activity (〉200 km3). The Colli Albani tephra in distal (〉500 km) deposits indicates that K-foiditic magma chambers fed large explosive eruptions (i.e., tens of km3 of pyroclastic rocks). Major oxides, trace elements and Raman spectra were measured on the glasses and minerals occurring in the K-foiditic scoria clasts of the ~530 kyr-old Tufo del Palatino, erupted in the Colli Albani volcanic district. The Colli Albani pre-eruptive magmatic system is characterized by the aH2O 〈 1 and high CO2 activ- ity in the melt, as testified by the CO3 in the clinopyroxene melt inclusions, by the early crystallization of CO3-bearing apatite and by the high CO2 activity in the free volatile phase that led to crystallization of calcium carbonate in the scoria clast vesicles. The K-foiditic magmas plot on the Cpx + Lc + melt divariant surface of the Ol-Cpx-Lc-Mel- H2O-CO2, P ≥ 0.2 GPa and T ≤ 1100 °C. The assimilation of cold carbonate by hot magmas is an important open- system process allowing the establishment of aH20 〈 1 condition in the volatile-rich, Colli Albani magma chambers where the stability fields of the olivine and phlogopite are reduced in favor of clinopyroxene and leucite. Trace ele- ment modelling indicates large amount of carbonate assimilation (~12.4 wt%) involved in the differentiation process that origins the K-foiditic magmas starting from a K-rich, phonotephritic parental magma. The large amount of as- similate carbonate is consistent with the peculiar distribution of the latent heat across the crystallization interval of the phonotephritic parental magma. The isenthalpic assimilation process is very efficient in the phonotephritic magma because the crystallization of clinopyroxene and leucite in equilibrium with a K-foiditic melt proceeds over a relatively large temperature interval (〉200 °C) and the K-foiditic melt shows low viscosity (104Pa·s at 1000 °C). Actually, the low melt viscosity, that increases the growth rate, and the large temperature interval of crys- tallization are intrinsic factors that increase the release of the latent heat of crystallization from the phonotephritic parental magma. Extrinsic factors enhancing the assimilation process efficiency are the thickness (〉4 km) and the depth (down to 5–7 km) of the carbonate substrate in the Colli Albani volcanic district.
    Description: Published
    Description: 106239
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-24
    Description: Dissolution of clinopyroxene (cpx) in a K-basaltic melt from the Campi Flegrei Volcanic District (Italy) has been investigated through dissolution and dissolution-crystallization experiments at pressure of 0.8 GPa, superliquidus temperature of 1350 ◦C, and dwell times between 0.5 and 1 h. The obtained dissolution rates range from 7.9⋅10− 6 cm s− 1 to 6.1⋅10− 6 cm s− 1 as a function of dwell time. In the dissolution-crystallization experiment (1300 ◦C; 0.8 GPa; 2 h), the formation of overgrowth rims accompanied by new cpx crystals suggests that the injection of recharge magmas in basaltic reservoir may lead to inverse or oscillatory zonation. The interaction between cpx and K-basaltic melt at ~1570 ◦C was studied by in situ radiography using synchrotron radiation combined with the Paris-Edinburgh press. This resulted in cpx resorption to occur depending on the temperature conditions with respect to the liquidus temperature of the cpx (TcpxL). The calculated cpx dissolution rates are ~5⋅10− 3 cm s− 1 at T ≤ TcpxL and ~ 3⋅10− 2 cm s− 1 at T ≥ TcpxL. The role of crystal dissolution in the estimation of magma residence times has been also tested for a natural magmatic system by interpolating the dissolution rates (~10− 5–10− 6 cm s− 1) with the textural data of cpx phenocrysts from the Agnano-Monte Spina pyroclastic deposit at Campi Flegrei caldera (Campanian region, Italy). Results from calculations indicate that the time required for partial or complete resorption of phenocrysts varies from ~0.5 to ~40 h, and that the effect of crystal dissolution may be relevant to estimate magma residence times whether signifcant dissolution occurs during magma mixing processes.
    Description: Published
    Description: 120533
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...