ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Estuarine mixing  (1)
  • Thermal stratification  (1)
  • 2020-2023  (2)
  • 1
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kalra, T. S., Li, X., Warner, J. C., Geyer, W. R., & Wu, H. Comparison of physical to numerical mixing with different tracer advection schemes in estuarine environments. Journal of Marine Science and Engineering, 7(10), (2019): 338, doi: 10.3390/jmse7100338.
    Description: The numerical simulation of estuarine dynamics requires accurate prediction for the transport of tracers, such as temperature and salinity. During the simulation of these processes, all the numerical models introduce two kinds of tracer mixing: (1) by parameterizing the tracer eddy diffusivity through turbulence models leading to a source of physical mixing and (2) discretization of the tracer advection term that leads to numerical mixing. Physical and numerical mixing both vary with the choice of horizontal advection schemes, grid resolution, and time step. By simulating four idealized cases, this study compares the physical and numerical mixing for three different tracer advection schemes. Idealized domains only involving physical and numerical mixing are used to verify the implementation of mixing terms by equating them to total tracer variance. Among the three horizontal advection schemes, the scheme that causes the least numerical mixing while maintaining a sharp front also results in larger physical mixing. Instantaneous spatial comparison of mixing components shows that physical mixing is dominant in regions of large vertical gradients, while numerical mixing dominates at sharp fronts that contain large horizontal tracer gradients. In the case of estuaries, numerical mixing might locally dominate over physical mixing; however, the amount of volume integrated numerical mixing through the domain compared to integrated physical mixing remains relatively small for this particular modeling system.
    Description: This study was funded through the Coastal Model Applications and Field Measurements Project and the Cross-shore and Inlets Project, US Geological Survey Coastal Marine Hazards and Resources Program.
    Keywords: Physical mixing ; Numerical mixing ; Advection schemes ; Estuarine mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-14
    Description: This project investigated the distribution of low dissolved oxygen bottom waters (hypoxia) in southern Cape Cod Bay. Hypoxia was documented for the first time in late summer 2019 and 2020 despite extensive monitoring for the past decade. The data include: 1) measurements of bottom dissolved oxygen collected in 2019 by the Massachusetts Division of Marine Fisheries (MDMF) and the Center for Coastal Studies (CCS) ; 2) full water column profiles of temperature, salinity, chlorophyll fluorescence, dissolved oxygen concentration and optical backscatter collected in late summer 2020 by the Woods Hole Oceanographic Institution (WHOI); 3) monthly water quality data including CTD with dissolved oxygen and chlorophyll fluorescence and discrete bottom samples analyzed for dissolved nutrients collected by the CCS for the period 2011-2020; 4) inorganic nutrients from discrete surface and bottom samples collected monthly for the period 2006-2020; 5) bottom temperature data collected the Wreck of Mars location by the MDMF over the period 1991-2021. There are four separate data sets included: 1) MDMF and CCS bottom dissolved oxygn from 2019; 2) CTD and ancillary data collected by WHOI in 2019; 3) CCS monthly survey data from 2011-2020; and 4) bottom temperature data collected by MDMF for 1991-2021. 1) MDMF/CCS dissolved oxygen data was collected from ship-based surveys using an YSI 6920 V2-2 data sonde; 2) WHOI CTD data was collected from vertical casts made from a small research vessel using an RBR CTD; 3) CCS CTD data was collected from vertical casts made from a small research vessel using a SeaBird Electronics CTD; 4) MDMF temperature data was collected from a bottom mounted temperature logger. Related Publications: Scully, M.E., W.R. Geyer, D. Borkman, T.L. Pouch, A. Costa, and O.C. Nichols, in press. Unprecedented summer hypoxia in southern Cape Cod Bay: An ecological response to regional climate change? Biogeosciences.
    Description: National Science Foundation - OCE- 2053240 NOAA Seagrant - NA20OAR4170506
    Keywords: Hypoxia ; Harmful Algal Blooms ; Climate Change ; Thermal stratification
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...