ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (1)
  • Wiley  (1)
  • EDP Sciences
  • Public Library of Science (PLoS)
  • 2020-2023  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-12-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 103(6), (2022): E1502-E1521, https://doi.org/10.1175/bams-d-21-0227.1.
    Description: Climate observations inform about the past and present state of the climate system. They underpin climate science, feed into policies for adaptation and mitigation, and increase awareness of the impacts of climate change. The Global Climate Observing System (GCOS), a body of the World Meteorological Organization (WMO), assesses the maturity of the required observing system and gives guidance for its development. The Essential Climate Variables (ECVs) are central to GCOS, and the global community must monitor them with the highest standards in the form of Climate Data Records (CDR). Today, a single ECV—the sea ice ECV—encapsulates all aspects of the sea ice environment. In the early 1990s it was a single variable (sea ice concentration) but is today an umbrella for four variables (adding thickness, edge/extent, and drift). In this contribution, we argue that GCOS should from now on consider a set of seven ECVs (sea ice concentration, thickness, snow depth, surface temperature, surface albedo, age, and drift). These seven ECVs are critical and cost effective to monitor with existing satellite Earth observation capability. We advise against placing these new variables under the umbrella of the single sea ice ECV. To start a set of distinct ECVs is indeed critical to avoid adding to the suboptimal situation we experience today and to reconcile the sea ice variables with the practice in other ECV domains.
    Description: PH’s contribution was funded under the Australian Government’s Antarctic Science Collaboration Initiative program, and contributes to Project 6 of the Australian Antarctic Program Partnership (ASCI000002). PH acknowledges support through the Australian Antarctic Science Projects 4496 and 4506, and the International Space Science Institute (Bern, Switzerland) project #405.
    Description: 2022-12-01
    Keywords: Sea ice ; Climate change ; Climatology ; Climate records
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Munoz, S. E., Porter, T. J., Bakkelund, A., Nusbaumer, J., Dee, S. G., Hamilton, B., Giosan, L., & Tierney, J. E. Lipid biomarker record documents hydroclimatic variability of the Mississippi River Basin during the common era. Geophysical Research Letters, 47(12), (2020): e2020GL087237, doi:10.1029/2020GL087237.
    Description: Floods and droughts in the Mississippi River basin are perennial hazards that cause severe economic disruption. Here we develop and analyze a new lipid biomarker record from Horseshoe Lake (Illinois, USA) to evaluate the climatic conditions associated with hydroclimatic extremes that occurred in this region over the last 1,800 years. We present geochemical proxy evidence of temperature and moisture variability using branched glycerol dialkyl glycerol tetraethers (brGDGTs) and plant leaf wax hydrogen isotopic composition (δ2Hwax) and use isotope‐enabled coupled model simulations to diagnose the controls on these proxies. Our data show pronounced warming during the Medieval era (CE 1000–1,600) that corresponds to midcontinental megadroughts. Severe floods on the upper Mississippi River basin also occurred during the Medieval era and correspond to periods of enhanced warm‐season moisture. Our findings imply that projected increases in temperature and warm‐season precipitation could enhance both drought and flood hazards in this economically vital region.
    Description: This project was supported by grants to S. E. M and L. G. (NSF EAR‐1804107), T. J. P. (NSERC Discovery Grant), and S. G. D. (NOAA‐NA18OAR4310427).
    Keywords: Lipid biomarker ; Leaf wax ; BrGDGT ; Common Era ; Paleoclimate ; Hydroclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...