ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • American Geophysical Union  (2)
  • Copernicus
  • 2020-2023  (2)
  • 1
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cael, B. B., Bisson, K., Conte, M., Duret, M. T., Follett, C. L., Henson, S. A., Honda, M. C., Iversen, M. H., Karl, D. M., Lampitt, R. S., Mouw, C. B., Muller-Karger, F., Pebody, C. A., Smith, K. L., & Talmy, D. Open ocean particle flux variability from surface to seafloor. Geophysical Research Letters, 48(9), (2021): e2021GL092895, https://doi.org/10.1029/2021GL092895.
    Description: The sinking of carbon fixed via net primary production (NPP) into the ocean interior is an important part of marine biogeochemical cycles. NPP measurements follow a log-normal probability distribution, meaning NPP variations can be simply described by two parameters despite NPP's complexity. By analyzing a global database of open ocean particle fluxes, we show that this log-normal probability distribution propagates into the variations of near-seafloor fluxes of particulate organic carbon (POC), calcium carbonate, and opal. Deep-sea particle fluxes at subtropical and temperate time-series sites follow the same log-normal probability distribution, strongly suggesting the log-normal description is robust and applies on multiple scales. This log-normality implies that 29% of the highest measurements are responsible for 71% of the total near-seafloor POC flux. We discuss possible causes for the dampening of variability from NPP to deep-sea POC flux, and present an updated relationship predicting POC flux from mineral flux and depth.
    Description: B. B. Cael and S. A. Henson acknowledge support from the National Environmental Research Council (NE/R015953/1) and the Horizon 2020 Framework Programme (820989, project COMFORT). The work reflects only the authors' views; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains. S. A. Henson also acknowledges support from a European Research Council Consolidator grant (GOCART, agreement number 724416). C. L. Follett acknowledges support from the Simons Foundation (grants #827829 and #553242). M. H. Iversen acknowledges support from the DFG-Research Center/Cluster of Excellence “The Ocean Floor – Earth's Uncharted Interface”: EXC-2077-390741603 and the HGF Young Investigator Group SeaPump “Seasonal and regional food web interactions with the biological pump”: VH-NG-1000. M. C. Honda acknowledges financial support from the Ministry of Education, Culture, Sports, Science, and Technology – Japan (grants #: KAKENHI JP18H04144 and JP19H05667). M. Conte acknowledges support from the US National Science Foundation, Division of Ocean Sciences for support for the Oceanic Flux Program time-series since inception, most recently by NSF OCE grant 1829885. D. M. Karl acknowledges support from the Gordon and Betty Moore Foundation (#3794) and the Simons Foundation (SCOPE #329108).
    Keywords: Ballast ; bathypelagic ; biogeochemistry ; log-normal ; particle flux ; variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hawco, N. J., Barone, B., Church, M. J., Babcock-Adams, L., Repeta, D. J., Wear, E. K., Foreman, R. K., Bjorkman, K. M., Bent, S., Van Mooy, B. A. S., Sheyn, U., DeLong, E. F., Acker, M., Kelly, R. L., Nelson, A., Ranieri, J., Clemente, T. M., Karl, D. M., & John, S. G. Iron depletion in the deep chlorophyll maximum: mesoscale eddies as natural iron fertilization experiments. Global Biogeochemical Cycles, 35(12), (2021): e2021GB007112, https://doi.org/10.1029/2021GB007112.
    Description: In stratified oligotrophic waters, phytoplankton communities forming the deep chlorophyll maximum (DCM) are isolated from atmospheric iron sources above and remineralized iron sources below. Reduced supply leads to a minimum in dissolved iron (dFe) near 100 m, but it is unclear if iron limits growth at the DCM. Here, we propose that natural iron addition events occur regularly with the passage of mesoscale eddies, which alter the supply of dFe and other nutrients relative to the availability of light, and can be used to test for iron limitation at the DCM. This framework is applied to two eddies sampled in the North Pacific Subtropical Gyre. Observations in an anticyclonic eddy center indicated downwelling of iron-rich surface waters, leading to increased dFe at the DCM but no increase in productivity. In contrast, uplift of isopycnals within a cyclonic eddy center increased supply of both nitrate and dFe to the DCM, and led to dominance of picoeukaryotic phytoplankton. Iron addition experiments did not increase productivity in either eddy, but significant enhancement of leucine incorporation in the light was observed in the cyclonic eddy, a potential indicator of iron stress among Prochlorococcus. Rapid cycling of siderophores and low dFe:nitrate uptake ratios also indicate that a portion of the microbial community was stressed by low iron. However, near-complete nitrate drawdown in this eddy, which represents an extreme case in nutrient supply compared to nearby Hawaii Ocean Time-series observations, suggests that recycling of dFe in oligotrophic ecosystems is sufficient to avoid iron limitation in the DCM under typical conditions.
    Description: The expedition and analyses were supported by the Simons Foundation SCOPE Grant 329108 to S. G. John, M. J. Church, D. J. Repeta, B. Van Mooy, E. F. DeLong, and D. M. Karl. N. J. Hawco was supported by a Simons Foundation Marine Microbial Ecology and Evolution postdoctoral fellowship (602538) and Simons Foundation grant 823167.
    Keywords: Chlorophyll ; Photosynthesis ; Iron limitation ; Oligotrophic ; Prochlorococcus ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...