ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Analytical chemistry  (1)
  • 2020-2023  (1)
  • 1935-1939
Collection
  • Articles  (1)
Publisher
Years
  • 2020-2023  (1)
  • 1935-1939
Year
  • 1
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Blevins, M. G., Allen, H. L., Colson, B. C., Cook, A.-M., Greenbaum, A. Z., Hemami, S. S., Hollmann, J., Kim, E., LaRocca, A. A., Markoski, K. A., Miraglia, P., Mott, V. L., Robberson, W. M., Santos, J. A., Sprachman, M. M., Swierk, P., Tate, S., Witinski, M. F., Kratchman, L. B., & Michel, A. P. M. Field-portable microplastic sensing in aqueous environments: a perspective on emerging techniques. Sensors, 21(10), (2021): 3532, https://doi.org/10.3390/s21103532.
    Description: Microplastics (MPs) have been found in aqueous environments ranging from rural ponds and lakes to the deep ocean. Despite the ubiquity of MPs, our ability to characterize MPs in the environment is limited by the lack of technologies for rapidly and accurately identifying and quantifying MPs. Although standards exist for MP sample collection and preparation, methods of MP analysis vary considerably and produce data with a broad range of data content and quality. The need for extensive analysis-specific sample preparation in current technology approaches has hindered the emergence of a single technique which can operate on aqueous samples in the field, rather than on dried laboratory preparations. In this perspective, we consider MP measurement technologies with a focus on both their eventual field-deployability and their respective data products (e.g., MP particle count, size, and/or polymer type). We present preliminary demonstrations of several prospective MP measurement techniques, with an eye towards developing a solution or solutions that can transition from the laboratory to the field. Specifically, experimental results are presented from multiple prototype systems that measure various physical properties of MPs: pyrolysis-differential mobility spectroscopy, short-wave infrared imaging, aqueous Nile Red labeling and counting, acoustophoresis, ultrasound, impedance spectroscopy, and dielectrophoresis.
    Description: We greatly thank our funding agencies: Gerstner Philanthropies (to A.P.M.M.), the Richard Saltonstall Charitable Foundation (to A.P.M.M.), and the Wallace Research Foundation (to A.P.M.M. and S.S.H.). Funding for M.G.B. was provided by a Draper Fellowship and to B.C.C. by an MIT Martin Fellowship. Draper thanks EPA region 9 for their partnership and support through a Cooperative Research and Development Agreement, an industry/government agreement regarding funding and personnel contributions of time and expertise.
    Keywords: Microplastics ; Plastic pollution ; Sensors ; Analytical chemistry ; Environment ; Water ; Ocean ; Marine pollution ; Polymers ; Freshwater ; Aqueous solutions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...