ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Deep biosphere  (1)
  • East Pacific Rise  (1)
  • National Academy of Sciences  (2)
  • Annual Reviews
  • 2020-2023  (2)
  • 1965-1969
Collection
  • Articles  (2)
Publisher
Years
Year
  • 1
    Publication Date: 2022-11-10
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McDermott, J. M., Parnell-Turner, R., Barreyre, T., Herrera, S., Downing, C. C., Pittoors, N. C., Pehr, K., Vohsen, S. A., Dowd, W. S., Wu, J.-N., Marjanović, M., & Fornari, D. J. Discovery of active off-axis hydrothermal vents at 9° 54’N East Pacific Rise. Proceedings of the National Academy of Sciences of the United States of America, 119(30), (2022): e2205602119, https://doi.org/10.1073/pnas.2205602119.
    Description: Comprehensive knowledge of the distribution of active hydrothermal vent fields along midocean ridges is essential to understanding global chemical and heat fluxes and endemic faunal distributions. However, current knowledge is biased by a historical preference for on-axis surveys. A scarcity of high-resolution bathymetric surveys in off-axis regions limits vent identification, which implies that the number of vents may be underestimated. Here, we present the discovery of an active, high-temperature, off-axis hydrothermal field on a fast-spreading ridge. The vent field is located 750 m east of the East Pacific Rise axis and ∼7 km north of on-axis vents at 9° 50′N, which are situated in a 50- to 100-m-wide trough. This site is currently the largest vent field known on the East Pacific Rise between 9 and 10° N. Its proximity to a normal fault suggests that hydrothermal fluid pathways are tectonically controlled. Geochemical evidence reveals deep fluid circulation to depths only 160 m above the axial magma lens. Relative to on-axis vents at 9° 50′N, these off-axis fluids attain higher temperatures and pressures. This tectonically controlled vent field may therefore exhibit greater stability in fluid composition, in contrast to more dynamic, dike-controlled, on-axis vents. The location of this site indicates that high-temperature convective circulation cells extend to greater distances off axis than previously realized. Thorough high-resolution mapping is necessary to understand the distribution, frequency, and physical controls on active off-axis vent fields so that their contribution to global heat and chemical fluxes and role in metacommunity dynamics can be determined.
    Description: Financial support was provided by the NSF Awards OCE-1949938 (to J.M.M.), OCE-1948936 (to R.P.-T.), and OCE-1949485 (to D.J.F. and T.B.).
    Keywords: Hydrothermal activity ; Midocean ridge ; Ocean chemistry ; Chemosynthetic ecosystem ; East Pacific Rise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chakraborty, A., Ruff, S. E., Dong, X., Ellefson, E. D., Li, C., Brooks, J. M., McBee, J., Bernard, B. B., & Hubert, C. R. J. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proceedings of the National Academy of Sciences of the United States of America, 117(20), (2020): 11029-11037, doi: 10.1073/pnas.2002289117.
    Description: Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.
    Description: We wish to thank Jody Sandel as well as the crew of R/V GeoExplorer for collection of piston cores, onboard core processing, sample preservation, and shipment. Cynthia Kwan and Oliver Horanszky are thanked for assistance with amplicon library preparation. We also wish to thank Jayne Rattray, Daniel Gittins, and Marc Strous for valuable discussions and suggestions, and Rhonda Clark for research support. Collaborations with Andy Mort from the Geological Survey of Canada, and Richard Hatton from Geoscience Wales are also gratefully acknowledged. This work was financially supported by a Mitacs Elevate Postdoctoral Fellowship awarded to A.C.; an Alberta Innovates-Technology Futures/Eyes High Postdoctoral Fellowship to S.E.R.; and a Natural Sciences and Engineering Research Council Strategic Project Grant, a Genome Canada Genomics Applications Partnership Program grant, a Canada Foundation for Innovation grant (CFI-JELF 33752) for instrumentation, and Campus Alberta Innovates Program Chair funding to C.R.J.H.
    Keywords: Deep biosphere ; Microbiome ; Dispersal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...