ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 212 (1980), S. 395-413 
    ISSN: 1432-0878
    Keywords: Kidney ; Distal tubule ; Collecting duct ; Electron microscopy ; Thin sections ; Freeze fracturing ; Tight junctions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Quantitative aspects of tight junction morphology were systematically studied in the cortical and outer medullary segments of the distal urinary tubules of rat, hamster, rabbit, cat, dog and the primitve primate Tupaia belangeri. Only minor differences in junctional architecture were found between straight and convoluted portions of the distal tubule. In contrast, the collecting duct in cortex and outer medulla, in all species, exhibits the most elaborate tight junctions observed along the uriniferous tubule. The present and previous findings from this laboratory indicate that increasing “tightness” of the junctional complexes is apparent along the course of the nephron in all species studied. The proposed relationship between quantitative aspects of the zonula occludens and presently available values for transepithelial electrical resistance was re-examined for the renal tubules. It was found that for the mammalian kidney a satisfactory correlation exists between the tight junction morphology and presently known functional parameters. This relationship is the more evident the more additional dimensional characteristics of the intercellular clefts are taken into consideration. It may therefore be concluded that, at least for the mammalian kidney, the assumption of differences in the molecular organization of the tight junctions is not needed to explain so far unresolved discrepancies between tubular morphology and function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 223 (1982), S. 603-614 
    ISSN: 1432-0878
    Keywords: Kidney ; Medullary collecting duct ; Rat ; Rabbit ; Tight junctions ; Freeze ; fracture electron microscopy ; Urinary concentration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The tight junctions along the medullary collecting duct in the kidneys of the rat and the rabbit were studied with freeze-fracture electron microscopy and quantitated according to the number of strands and the apico-basal depth (nm) of the junctions. The most elaborate tight junctions were found in the inner stripe of the outer medulla; rat: 10.6±0.8 strands and 205±24nm; rabbit: 11.6±2.4 strands and 291±55 nm. The elaboration of the tight junctions decreased continuously towards the papillary tip. Inner zone I; rat: 9.3±2.6 strands and 186±38nm, rabbit: 9.5±2.3 strands and 247±59nm. Inner zone II; rat: 7.1±2.2 strands and 129±32nm, rabbit: 8.5±1.4 strands and 199±26nm. Inner zone III; rat: 6.0±1.6 strands and 111 + 19 nm, rabbit: 7.0±1.5 strands and 183±43 nm. In the inner zone III comprising the papillary tip tight junctions with only 1–3 strands were not infrequently seen. Preliminary findings in the kidney of the golden hamster indicate a similar decline of junctional tightness along the collecting duct. These morphological observations suggest that the permeability of the paracellular pathway of the medullary collecting duct increases towards the tip of the papilla, especially in the rat. The functional implications for the medullary recycling of urea and electrolytes, and for the urinary concentrating mechanism are discussed. In addition, the tight junctions of the papillary epithelium are described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...