ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
  • 1990-1994  (2)
  • 1
  • 2
    ISSN: 1432-072X
    Keywords: Prokaryote ; Prochlorophyte ; Prochlorococcus marinus ; Cyanobacteria ; Picoplankton ; Molecular phylogeny ; Divinyl chlorophyll
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several years ago, prochlorophyte picoplankton were discovered in the N. Atlantic. They have since been found to be abundant within the euphotic zone of the world's tropical and temperate oceans. The cells are extremely small, lack phycobiliproteins, and contain divinyl chlorophyll a and b as their primary photosynthetic pigments. Phylogenies constructed from DNA sequence data indicate that these cells are more closely related to a cluster of marine cyanobacteria than to their prochlorophyte ‘relatives’ Prochlorothrix and Prochloron. Several strains of this organism have recently been brought into culture, and herewith are given the name Prochlorococcus marinus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-29
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Bayer, B., Kellom, M., Valois, F., Waterbury, J., & Santoro, A. Complete genome sequences of two phylogenetically distinct Nitrospina strains isolated from the Atlantic and Pacific Oceans. Microbiology Resource Announcements, 11(5), (2022): e00100–e00122, https://doi.org/10.1128/mra.00100-22.
    Description: The complete genome sequences of two chemoautotrophic nitrite-oxidizing bacteria of the genus Nitrospina are reported. Nitrospina gracilis strain Nb-211 was isolated from the Atlantic Ocean, and Nitrospina sp. strain Nb-3 was isolated from the Pacific Ocean. We report two highly similar ~3.07-Mbp genome sequences that differ by the presence of ferric iron chelator (siderophore) biosynthesis genes.
    Description: This work was supported by a Simons Foundation Early Career Investigator Award (3435889) and a U.S. National Science Foundation award OCE-1924512 to A.E.S. B.B. was supported by the Austrian Science Fund (FWF) project number J4426-B. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under contract number DE-AC02-05CH11231. These data were generated for JGI proposal number 506203 to B.B. and A.E.S.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the University of California, Berkeley 1976.
    Description: A total of 34 strains of cyanobacteria (blue-green algae) representative of the orders Chamaesiphonales and Pieurocapsales were isolated in axenic culture from marine and fresh water sources. Two strains isolated from fresh water, both assignable to the genus Chamaesiphon, are unicellular cyanobacteria which reproduce by budding; the buds being formed in succession at one pole of the oval cell. These buds are the structures currently termed "exospores" by algologists. The other 32 strains, some marine and some fresh water, reproduce by the formation of small spherical spores produced through the multiple fission of a vegetative cell. In these strains the peptidoglycan and lipopolysaccharide-containing cell wall layers common to all cyanobacteria are enclosed by a third, fibrous layer which increases in thickness during vegetative cell enlargement: spores are liberated by rupture of this wall layer of the parental cell. In some strains, the fibrous wall layer is synthesized during multiple fission, and the spores, each enclosed by this layer, are immotile after release. In others, the synthesis of the fibrous wall layer is arrested during multiple fission, and the spores, initially lacking this layer, show transient gliding motility after release. Among the spore-forming strains, six major strain clusters could be distinguished in terms of their developmental patterns and each strain cluster could be identified with an existing genus. These included strictly unicellular forms (Dermocarpa, Xenococcus), forms which undergo only one or two vegetative divisions (Dermocarpella), and forms where extensive vegetative growth normally precedes spore formation (Myxosarcina, Chroococcidiopsis, Pleurocapsa). Revised definitions of the orders Chamaesiphonales and Pleurocapsales and of some of their constituent genera are proposed in the light of these findings. The potential taxonomic utility of certain physiological and chemical properties was also examined. These included: ionic requirements including sodium, chloride, calcium and magnesium; vitamin requirements; nitrogen sources; temperature relationships; heterotrophy; pigment composition; and mean DNA base composition. There were no clear-cut correlations between genera defined in terms of developmental patterns and groups defined in terms of any of the physiological and chemical properties examined. However, many of the latter properties will be useful ·in distinguishing species within each genus. Strains of marine origin can be distinguished from fresh water strains in culture by their elevated requirements for sodium, halide, calcium and magnesium. This work has revealed the intrinsically unsatisfactory nature of the existing classification of cyanobacteria based almost exclusively on the description of field materials. Many of the characters previously used to differentiate species (and even genera) are not valid. It is therefore proposed that all future taxonomic descriptions should be based on the detailed characterisation of axenic cultures, and that cultures should replace herbarium specimens as reference materials.
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...