ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (4)
  • 2005-2009  (2)
  • 1
  • 2
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fiore, C. L., Alexander, H., Soule, M. C. K., & Kujawinski, E. B. A phosphate starvation response gene (psr1-like) is present and expressed in Micromonas pusilla and other marine algae. Aquatic Microbial Ecology, 86, (2021): 29–46, https://doi.org/10.3354/ame01955.
    Description: Phosphorus (P) limits primary production in regions of the surface ocean, and many plankton species exhibit specific physiological responses to P deficiency. The metabolic response of Micromonas pusilla, an ecologically relevant marine photoautotroph, to P deficiency was investigated using metabolomics and comparative genomics. The concentrations of some intracellular metabolites were elevated in the P-deficient cells (e.g. xanthine, inosine), and genes involved in the associated metabolic pathways shared a predicted conserved amino acid motif in the non-coding regions of each gene. The presence of the conserved motif suggests that these genes may be co-regulated, and the motif may constitute a regulatory element for binding a transcription factor, specifically that of Psr1 (phosphate starvation response). A putative phosphate starvation response gene ( psr1-like) was identified in M. pusilla with homology to well characterized psr1/ phr1 genes in algae and plants, respectively. This gene appears to be present and expressed in other marine algal taxa (e.g. Emiliania huxleyi) in field sites that are chronically P limited. Results from the present study have implications for understanding phytoplankton taxon-specific roles in mediating P cycling in the ocean.
    Description: This research was funded by the Gordon and Betty Moore Foundation through Grant GBMF3304 to E.B.K., and it was partially supported by a grant from the Simons Foundation (Award ID 509034 to E.B.K.).
    Keywords: Micromonas pusilla ; Phosphate stress response ; Marine algae ; Metabolomics ; Dissolved organic matter ; Biological oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Longnecker, K., Oswald, L., Soule, M. C. K., Cutter, G. A., & Kujawinski, E. B. Organic sulfur: a spatially variable and understudied component of marine organic matter. Limnology and Oceanography Letters, (2020), doi:10.1002/lol2.10149.
    Description: Sulfur (S) is a major heteroatom in organic matter. This project evaluated spatial variability in the concentration and molecular‐level composition of organic sulfur along gradients of depth and latitude. We measured the concentration of total organic sulfur (TOS) directly from whole seawater. Our data reveal high variability in organic sulfur, relative to established variability in total organic carbon or nitrogen. The deep ocean contained significant amounts of organic sulfur, and the concentration of TOS in North Atlantic Deep Water (NADW) decreased with increasing age while total organic carbon remained stable. Analysis of dissolved organic matter extracts by ultrahigh resolution mass spectrometry revealed that 6% of elemental formulas contained sulfur. The sulfur‐containing compounds were structurally diverse, and showed higher numbers of sulfur‐containing elemental formulas as NADW moved southward. These measurements of organic sulfur in seawater provide the foundation needed to define the factors controlling organic sulfur in the global ocean.
    Description: We thank Catherine Carmichael, Winifred Johnson, and Gretchen Swarr for assistance with sample collection and processing, and Joe Jennings for the analysis of inorganic nutrients. The help of the captain and crew of the R/V Knorr and the other cruise participants during the “DeepDOM” cruise is appreciated. Two anonymous reviewers and Patricia Soranno provided thorough comments that greatly improved the manuscript. The ultrahigh resolution mass spectrometry samples were analyzed at the WHOI FT‐MS Users' Facility that is funded by the National Science Foundation (grant OCE‐0619608) and the Gordon and Betty Moore Foundation (GMBF1214). This project was funded by NSF grants OCE‐1154320 (to EBK and KL), the W.M. Marquet Award (to KL), and OCE‐1435708 (to GAC). The authors declare no conflicts of interest.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Widner, B., Kido Soule, M. C., Ferrer-González, F. X., Moran, M. A., & Kujawinski, E. B. Quantification of amine- and alcohol-containing metabolites in saline samples using pre-extraction benzoyl chloride derivatization and ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC MS/MS). Analytical Chemistry, 93(11), (2021): 4809-4817, https://doi.org/10.1021/acs.analchem.0c03769.
    Description: Dissolved metabolites serve as nutrition, energy, and chemical signals for microbial systems. However, the full scope and magnitude of these processes in marine systems are unknown, largely due to insufficient methods, including poor extraction of small, polar compounds using common solid-phase extraction resins. Here, we utilized pre-extraction derivatization and ultrahigh performance liquid chromatography electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) to detect and quantify targeted dissolved metabolites in seawater and saline culture media. Metabolites were derivatized with benzoyl chloride by their primary and secondary amine and alcohol functionalities and quantified using stable isotope-labeled internal standards (SIL-ISs) produced from 13C6-labeled benzoyl chloride. We optimized derivatization, extraction, and sample preparation for field and culture samples and evaluated matrix-derived biases. We have optimized this quantitative method for 73 common metabolites, of which 50 cannot be quantified without derivatization due to low extraction efficiencies. Of the 73 metabolites, 66 were identified in either culture media or seawater and 45 of those were quantified. This derivatization method is sensitive (detection limits = pM to nM), rapid (∼5 min per sample), and high throughput.
    Description: Funding included the Gordon and Betty Moore Foundation (Award GBMF5503 to M.A.M. and E.B.K.), Simons Foundation International (Award 409923 to E.B.K.), and the National Science Foundation (Award 1656311 to M.A.M.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Weber, L., Armenteros, M., Soule, M. K., Longnecker, K., Kujawinski, E. B., & Apprill, A. Extracellular reef metabolites across the protected Jardines de la Reina, Cuba Reef System. Frontiers in Marine Science, 7, (2020): 582161, https://doi.org/10.3389/fmars.2020.582161.
    Description: Coral reef ecosystems are incredibly diverse marine biomes that rely on nutrient cycling by microorganisms to sustain high productivity in generally oligotrophic regions of the ocean. Understanding the composition of extracellular reef metabolites in seawater, the small organic molecules that serve as the currency for microorganisms, may provide insight into benthic-pelagic coupling as well as the complexity of nutrient cycling in coral reef ecosystems. Jardines de la Reina (JR), Cuba is an ideal environment to examine extracellular metabolites across protected and high-quality reefs. Here, we used liquid chromatography mass spectrometry (LC-MS) to quantify specific known metabolites of interest (targeted metabolomics approach) and to survey trends in metabolite feature composition (untargeted metabolomics approach) from surface and reef depth (6 – 14 m) seawater overlying nine forereef sites in JR. We found that untargeted metabolite feature composition was surprisingly similar between reef depth and surface seawater, corresponding with other biogeochemical and physicochemical measurements and suggesting that environmental conditions were largely homogenous across forereefs within JR. Additionally, we quantified 32 of 53 detected metabolites using the targeted approach, including amino acids, nucleosides, vitamins, and other metabolic intermediates. Two of the quantified metabolites, riboflavin and xanthosine, displayed interesting trends by depth. Riboflavin concentrations were higher in reef depth compared to surface seawater, suggesting that riboflavin may be produced by reef organisms at depth and degraded in the surface through photochemical oxidation. Xanthosine concentrations were significantly higher in surface reef seawater. 5′-methylthioadenosine (MTA) concentrations increased significantly within the central region of the archipelago, displaying biogeographic patterns that warrant further investigation. Here we lay the groundwork for future investigations of variations in metabolite composition across reefs, sources and sinks of reef metabolites, and changes in metabolites over environmental, temporal, and reef health gradients.
    Description: This work was supported by the Dalio Foundation (now “OceanX”) and the National Science Foundation (OCE-1736288) (award to Amy Apprill). The mass spectrometry samples were analyzed at the WHOI FT-MS Users’ Facility with instrumentation funded by the National Science Foundation (grant OCE-1058448 to EK and MK) and the Simons Foundation (Award ID #509042, EK). Lastly, a portion of the publication fees was supported by the Massachusetts Institute of Technology (MIT) Open Access Article Publication Subvention fund from MIT Libraries.
    Keywords: Metabolomics ; Coral reefs ; Microorganisms ; Ecology ; DOM cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...