ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Columbus Iselin (Ship) Cruise AmasSeds 3  (1)
  • Estuaries  (1)
  • Mixing
  • Shear structure/flows
  • Turbulence
  • 2020-2023  (1)
  • 2005-2009  (2)
  • 1
    Publication Date: 2022-05-25
    Description: © 2008 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Environmental Fluid Mechanics 8 (2008): 495-509, doi:10.1007/s10652-008-9107-2.
    Description: Estuarine turbulence is notable in that both the dissipation rate and the buoyancy frequency extend to much higher values than in other natural environments. The high dissipation rates lead to a distinct inertial subrange in the velocity and scalar spectra, which can be exploited for quantifying the turbulence quantities. However, high buoyancy frequencies lead to small Ozmidov scales, which require high sampling rates and small spatial aperture to resolve the turbulent fluxes. A set of observations in a highly stratified estuary demonstrate the effectiveness of a vessel-mounted turbulence array for resolving turbulent processes, and for relating the turbulence to the forcing by the Reynolds-averaged flow. The observations focus on the ebb, when most of the buoyancy flux occurs. Three stages of mixing are observed: (1) intermittent and localized but intense shear instability during the early ebb; (2) continuous and relatively homogeneous shear-induced mixing during the mid-ebb, and weakly stratified, boundary-layer mixing during the late ebb. The mixing efficiency as quantified by the flux Richardson number Rf was frequently observed to be higher than the canonical value of 0.15 from Osborn (J Phys Oceanogr 10:83–89, 1980). The high efficiency may be linked to the temporal–spatial evolution of shear instabilities.
    Description: The funding for this research was obtained from ONR Grant N00014-06-1-0292 and NSF Grant OCE-0729547.
    Keywords: Turbulence ; Estuaries ; Shear instability ; Buoyancy flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Warner, J. C., Geyer, W. R., Ralston, D. K., & Kalra, T. Using tracer variance decay to quantify variability of salinity mixing in the Hudson River Estuary. Journal of Geophysical Research: Oceans, 125(12), (2020): e2020JC016096, https://doi.org/10.1029/2020JC016096.
    Description: The salinity structure in an estuary is controlled by time‐dependent mixing processes. However, the locations and temporal variability of where significant mixing occurs is not well‐understood. Here we utilize a tracer variance approach to demonstrate the spatial and temporal structure of salinity mixing in the Hudson River Estuary. We run a 4‐month hydrodynamic simulation of the tides, currents, and salinity that captures the spring‐neap tidal variability as well as wind‐driven and freshwater flow events. On a spring‐neap time scale, salinity variance dissipation (mixing) occurs predominantly during the transition from neap to spring tides. On a tidal time scale, 60% of the salinity variance dissipation occurs during ebb tides and 40% during flood tides. Spatially, mixing during ebbs occurs primarily where lateral bottom salinity fronts intersect the bed at the transition from the main channel to adjacent shoals. During ebbs, these lateral fronts form seaward of constrictions located at multiple locations along the estuary. During floods, mixing is generated by a shear layer elevated in the water column at the top of the mixed bottom boundary layer, where variations in the along channel density gradients locally enhance the baroclinic pressure gradient leading to stronger vertical shear and more mixing. For both ebb and flood, the mixing occurs at the location of overlap of strong vertical stratification and eddy diffusivity, not at the maximum of either of those quantities. This understanding lends a new insight to the spatial and time dependence of the estuarine salinity structure.
    Description: This study was funded through the Coastal Model Applications and Field Measurements Project and the Cross‐shore and Inlets Project, US Geological Survey Coastal Marine Hazards and Resources Program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.
    Keywords: Hudson River Estuary ; Mixing ; Numerical modeling ; Tracer variance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: A Multidisciplinary Amazon Shelf SEDiment Study (AmasSeds) is a cooperative research program by geological, chemical, physical, and biological oceanographers from Brazil and the United States to study sedimentary processes occurring over the continental shelf near the mouth of the Amazon River. The physical oceanography component of AmasSeds included a moored array deployed on the continental shelf approximately 300km northwest of the Amazon River mouth near 3.5°N. The moored array consisted of a cross-shelf transect of three mooring sites located on the 18-m, 65-m, and 103-m isobaths. The moored array was deployed for approximately 4 months, from early February, 1990 to mid-June, 1990, obtaining time series measurements of current, temperature, conductivity, and wind. This report describes the physical oceanography moored array component and provides a statistical and graphical summary of the moored observations.
    Description: Funding was provided by the National Science Foundation through Grant Nos. OCE 88-12917 and OCE 91-15712.
    Keywords: Moored oceanographic observations ; AmasSeds (A Multidisciplinary Amazon Shelf SEDiment Study) ; Columbus Iselin (Ship) Cruise AmasSeds 2 ; Columbus Iselin (Ship) Cruise AmasSeds 3
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 5362313 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...