ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Science, L'wiw, Inst. f. Theoret. Geodäsie, vol. 308, no. 5728, pp. 1595, pp. B01408, (ISSN: 1340-4202)
    Publication Date: 2005
    Keywords: Tsunami(s) ; Banda ; Aceh ; Indonesia ; Earthquake engineering, engineering seismology ; stresses ; the ; importance ; of ; education ; runup
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-28
    Description: The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of some of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory (NLR). The baseline all-tetrahedral and hybrid unstructured grids were generated at the NASA Langley Research Center and the U.S. Air Force Academy, respectively. To provide more geometrical resolution, additional unstructured grids were generated at EADS-MAS, the UTSimCenter, and Boeing Phantom Works. All the grids generated within the framework of CAWAPI will be discussed.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 4-1 - 4-17; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.
    Keywords: Astrophysics
    Type: INTEGRAL Session of the 10th HEAD Meeting; Mar 31, 2008 - Apr 03, 2008; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).
    Keywords: Technology Utilization and Surface Transportation
    Type: MSC-23850-1 , NASA Tech Briefs, November 2009; 20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Ares V is the heavy lift vehicle NASA is designing for lunar and other space missions. It has significantly more lift capability than the Saturn V vehicle used for the Apollo missions to the moon. Ares V is powered by two recoverable 5.5 segment solid rocket boosters and six RS-68B engines on the core stage. The upper stage, designated as the Earth Departure Stage, is powered by a single J-2X engine. This paper provides an overview of the Ares V vehicle and the RS-68B engine, an upgrade to the Pratt & Whitney Rocketdyne RS-68 engine developed for the Delta IV vehicle.
    Keywords: Launch Vehicles and Launch Operations
    Type: M09-0120 , JANNAF Liquid Propulsion Subcommittee (LPS) Special Session; Dec 08, 2008 - Dec 12, 2008; Orlando, Fl; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.
    Keywords: Mathematical and Computer Sciences (General)
    Type: NASA/IEEE Conference on MASS Storage Systems and Technologies MSST 2006; May 15, 2006 - May 18, 2006; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In the cockpit of the NASA's next generation of spacecraft, most of vehicle commanding will be carried out via electronic interfaces instead of hard cockpit switches. Checklists will be also displayed and completed on electronic procedure viewers rather than from paper. Transitioning to electronic cockpit interfaces opens up opportunities for more automated assistance, including automated root-cause diagnosis capability. The paper reports an empirical study evaluating two potential concepts for fault management interfaces incorporating two different levels of automation. The operator performance benefits produced by automation were assessed. Also, some design recommendations for spacecraft fault management interfaces are discussed.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: 08ICES-0207
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.
    Keywords: Computer Operations and Hardware
    Type: CP-2006-214135 , NASA/IEEE Conference on MASS Storage Systems and Technologies MSST 2006; May 15, 2006 - May 18, 2006; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory NLR. Although the algorithms used by NLR had become available just before CAWAPI and thus only a limited experience with their application to such a complex configuration had been gained, a grid of good quality was generated well within four weeks. This time compared favourably with that required to produce the unstructured grids in CAWAPI. The baseline all-tetrahedral and hybrid unstructured grids has been generated at NASA Langley Research Center and the USAFA, respectively. To provide more geometrical resolution, trimmed unstructured grids have been generated at EADS-MAS, the UTSimCenter, Boeing Phantom Works and KTH/FOI. All grids generated within the framework of CAWAPI will be discussed in the article. Both results obtained on the structured grids and the unstructured grids showed a significant improvement in agreement with flight test data in comparison with those obtained on the structured multi-block grid used during CAWAP.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-5900 , LF99-6826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-16
    Description: Recent engineering analyses of the integrated Ares-Orion stack show that vibration levels for Orion crews have the potential to be much higher than those experienced in Gemini, Apollo, and Shuttle vehicles. Of particular concern to the Constellation Program (CxP) is the 12 Hz thrust oscillation (TO) that the Ares-I rocket develops during the final ~20 seconds preceding first-stage separation, at maximum G-loading. While the structural-dynamic mitigations being considered can assure that vibration due to TO is reduced to below the CxP crew health limit, it remains to be determined how far below this limit vibration must be reduced to enable effective crew performance during launch. Moreover, this "performance" vibration limit will inform the operations concepts (and crew-system interface designs) for this critical phase of flight. While Gemini and Apollo studies provide preliminary guidance, the data supporting the historical limits were obtained using less advanced interface technologies and very different operations concepts. In this study, supported by the Exploration Systems Mission Directorate (ESMD) Human Research Program, we investigated display readability-a fundamental prerequisite for any interaction with electronic crew-vehicle interfaces-while observers were subjected to 12 Hz vibration superimposed on the 3.8 G loading expected for the TO period of ascent. Two age-matched groups of participants (16 general population and 13 Crew Office) performed a numerical display reading task while undergoing sustained 3.8 G loading and whole-body vibration at 0, 0.15, 0.3, 0.5, and 0.7 g in the eyeballs in/out (x-axis) direction. The time-constrained reading task used an Orion-like display with 10- and 14-pt non-proportional sans-serif fonts, and was designed to emulate the visual acquisition and processing essential for crew system monitoring. Compared to the no-vibration baseline, we found no significant effect of vibration at 0.15 and 0.3 g on task error rates (ER) or response times (RT). Significant degradations in both ER and RT, however, were observed at 0.5 and 0.7 g for 10-pt, and at 0.7 g for 14-pt font displays. These objective performance measures were mirrored by participants' subjective ratings. Interestingly, we found that the impact of vibration on ER increased with distance from the center of the display, but only for vertical displacements. Furthermore, no significant ER or RT aftereffects were detected immediately following vibration, regardless of amplitude. Lastly, given that our reading task required no specialized spaceflight expertise, our finding that effects were not statistically distinct between our two groups is not surprising. The results from this empirical study provide initial guidance for evaluating the display readability trade-space between text-font size and vibration amplitude. However, the outcome of this work should be considered preliminary in nature for a number of reasons: 1. The single 12 Hz x-axis vibration employed was based on earlier load-cycle models of the induced TO environment at the end of Ares-I first stage flight. Recent analyses of TO mitigation designs suggest that significant concurrent off-axis vibration may also occur. 2. The shirtsleeve environment in which we tested fails to capture the full kinematic and dynamic complexity of the physical interface between crewmember and the still-to-bematured helmet-suit-seat designs, and the impact these will have for vibration transmission and consequent performance. 3. By examining performance in this reading and number processing task, we are only assessing readability, a first and necessary step that in itself does not directly address the performance of more sophisticated operational tasks such as vehicle-health monitoring or manual control of the vehicle.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: NASA/TM-2009-215386 , TH-079 , ARC-E-DAA-TN17188
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...