ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SAXS  (2)
  • Space Communications, Spacecraft Communications, Command and Tracking  (2)
  • 2020-2023
  • 2005-2009  (2)
  • 1990-1994  (2)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 737-747 
    ISSN: 0887-6266
    Keywords: Crystallization ; melting ; morphology ; thermoplastic polyimide ; New-TPI ; PMDA ; 33BAPB ; polarizability ; SAXS ; lamellar thickness ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Crystallization, melting, and morphology of a thermoplastic polyimide (New-TPI) containing pyromellitic dianhydride (PMDA) and 3,3'-bis(4-aminophenoxy) biphenyl diamine (33BAPB) moieties have been studied. This material showed a glass transition temperature (Tg) of 250°C, an equilibrium melting temperature (T°m) of 406°C and a heat of fusion (ΔH) for 100% crystallinity of 6.38 kJ/mol. Measurements of the crystallization bulk rate (by DSC) and spherulite growth rate (by optical microscopy) indicated that the maximum crystallization temperature was about 320°C and the crystallization growth process was three-dimensional under thermal nucleation (the Avrami exponent n ca. 4). The rate of nucleation density was estimated to decrease with increasing temperature, and the product of two crystal surface free energies σeσo was calculated to be 1176 erg2/cm4. The meltgrown spherulite consistently showed a Maltese cross pattern with negative birefringence under cross-polars. The calculation of polarizability along the three unit cell axes suggested that the crystal b axis may be along the spherulite growth (radial) direction. Two scattering maxima were seen in small-angle x-ray scattering (SAXS) profiles. The dominant peak indicated a long period of ca. 20 nm which varied as a function of crystallization temperature. The weak peak at a d-spacing of 2.5 nm was independent of temperature and has been attributed to the chemical repeat distance determined by Okuyama et al. (indexed as 001). The lamellar thickness lc, estimated by the correlation function analysis of the SAXS data, was found to be similar to that determined by the Scherrer analysis of the 001 reflection peak. © 1994 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 3 (1992), S. 257-262 
    ISSN: 1042-7147
    Keywords: Chiral liquid crystalline polymers ; Antiferroelectricity ; Ferrielectricity ; SAXS ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The structure and phase behavior of liquid crystalline polymers (LCPs) having a common chiral side chain mesogen but different main chain structures have been investigated using small-angle X-ray scattering (SAXS). While the low molecular weight chiral side chain mesogen by itself exhibits ferroelectricity, the SAXS data of the side chain LCP with a flexible polyacrylate backbone contains a bilayered superstructure peak that is indicative of antiferroelectric order. The combined LCP with a nonpolar main chain mesogen also has a bilayered superstructure, but has a different structural organization in the proposed antiferroelectric phase compared to the side chain LCP. Further changes in the phase behavior and structural organization occur when a polar group is introduced into the main chain mesogen. A ferrielectric phase has been proposed to explain the observation of a trilayered superstructure in the corresponding SAXS data. The influence of the chemical structure and connectivity on the phase behavior and superstructure formation in the chiral LCPs is discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A simplified laser communications (lasercom) system architecture, primarily for a deep-space flight transceivers, can be realized by decoupling the lasercom optical components from the host spacecraft using a disturbance-free platform (DFP) developed by Lockheed Martin Space System Company. Unlike conventional lasercom system architectures where a high bandwidth control loop is used to stabilize the optical line-of-sight in the presence of platform disturbance, the DFP package isolates the optical train from the high frequency platform jitter produced by the host. By preventing the vibration from coupling into the optics train, the need for a high bandwidth beam stabilization control loop (including fast steering mirror, detectors, controls and the associated relay optics) is eliminated with possible mass savings.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: SPIE Photonics West; Jan 23, 2006 - Jan 25, 2006; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: As NASA proceeds with plans for increased science data return and higher data transfer capacity for science missions, both RF and optical communications are viable candidates for significantly higher-rate communications from deep space to Earth. With the inherent advantages, smaller apertures and larger bandwidths, of optical communications, it is reasonable to expect that at some point in time and combination of increasing distance and data rate, the rapidly emerging optical capabilities would become more advantageous than the more mature and evolving RF techniques. This paper presents a comparison of the burden to a spacecraft by both RF and optical communications systems for data rates of 10, 100, and 1000 Mbps and large distances. Advanced technology for RF and optical communication systems have been considered for projecting capabilities in the 2020 timeframe. For the comparisons drawn, the optical and RF ground terminals were selected to be similar in cost. The RF system selected is composed of forty-five 12-meter antennas, whereas the selected optical system is equivalent to a 10-meter optical telescope. Potential differences in availability are disregarded since the focus of this study is on spacecraft mass and power burden for high-rate mission data, under the assumption that essential communications will be provided by low-rate, high availability RF. For both the RF and optical systems, the required EIRP, for a given data rate and a given distance, was achieved by a design that realized the lowest possible communications subsystem mass (power + aperture) consistent with achieving the lowest technology risk. A key conclusion of this paper is that optical communications has great potential for high data rates and distances of 2.67 AU and beyond, but requires R&D and flight demonstrations to prove out technologies.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: NASA/TM-2007-214459 , E-15723 , K000083 , 12th Ka and Broadband Communications Conference; Sep 27, 2006 - Sep 29, 2006; Naples; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...