ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-22
    Description: Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We find that fossil fuel and biomass burning soot aerosols exert a radiative forcing of −0.68 to 0.01 Wm−2 while anthropogenic sulfate aerosols exert a forcing of −0.01 to 0.18 Wm−2. Our calculations show that the sign of the forcing by aircraft soot depends on the model configuration and can be both positive or negative, ranging from −0.16 to 0.02 Wm−2. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-06-03
    Description: Large intra-season differences in concentrations of CO and O3 ([CO], [O3]) were detected at Miyun, a rural site north of Beijing, in summer 2006. Despite an increase in mean daytime [CO] from 500 ppbv in June to 700 ppbv in July, mean daytime [O3] dropped from 67 ppbv in June to 50 ppbv in July and August. The observed changes in CO and O3 are attributed to the influence of the summer monsoonal circulation that develops over the North China Plain in July. Photochemical production of O3 is reduced as a consequence of increased cloudiness during July and August, as indicated by the strong negative correlation observed between [O3] and satellite observations of cloud optical depth, with cloudiness having little effect on CO. The analysis suggests a strategy for emission controls that could be implemented in an economically efficient manner to minimize the frequency of high levels of O3 during summer in Beijing.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-09-30
    Description: Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While BC is highly absorbing, some organic compounds also have significant absorption, which is greater at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to direct aerosol radiative forcing. In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble organic carbon contributed to light absorption at both ultraviolet and visible wavelengths. However, a larger portion came from organic carbon that is extractable only by methanol. The spectra of water-soluble organic carbon are similar to others in the literature. We compared spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating organic aerosol with higher absorption, causing about a factor of four increase in mass-normalized absorption at visible wavelengths. A simple model suggests that, despite the absorption, both high-temperature and low-temperature carbon have negative climate forcing over a surface with average albedo.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-11-04
    Description: The IPCC has stressed the importance of producing unbiased estimates of the uncertainty in indirect aerosol forcing, in order to give policy makers as well as research managers an understanding of the most important aspects of climate change that require refinement. In this study, we use 3-D meteorological fields together with a radiative transfer model to examine the spatially-resolved uncertainty in estimates of the first indirect aerosol forcing. The global mean forcing calculated in the reference case is -1.30 Wm-2. Uncertainties in the indirect forcing associated with aerosol and aerosol precursor emissions, aerosol mass concentrations from different chemical transport models, aerosol size distributions, the cloud droplet parameterization, the representation of the in-cloud updraft velocity, the relationship between effective radius and volume mean radius, cloud liquid water content, cloud fraction, and the change in the cloud drop single scattering albedo due to the presence of black carbon are calculated. The aerosol burden calculated by chemical transport models and the cloud fraction are found to be the most important sources of uncertainty. Variations in these parameters cause an underestimation or overestimation of the indirect forcing compared to the base case by more than 0.6 Wm-2. Uncertainties associated with aerosol and aerosol precursor emissions, uncertainties in the representation of the aerosol size distribution (including the representation of the pre-industrial size distribution), and uncertainties in the representation of cloud droplet spectral dispersion effect cause uncertainties in the global mean forcing of 0.2~0.6 Wm-2. There are significant regional differences in the uncertainty associated with the first indirect forcing with the largest uncertainties in industrial regions (North America, Europe, East Asia) followed by those in the major biomass burning regions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-02-03
    Description: Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We use a version of the aerosol model that predicts sulfate number and mass concentrations in 3-modes and includes the formation of sulfate aerosol through homogeneous binary nucleation as well as a version that only predicts sulfate mass. The 3-mode version best represents the Aitken aerosol nuclei number concentrations in the upper troposphere which dominated ice crystal residues in the upper troposphere. Fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of −0.3 to −0.4 Wm−2 while anthropogenic sulfate aerosols and aircraft aerosols exert a forcing of −0.01 to 0.04 Wm−2 and −0.16 to −0.12 Wm−2, respectively, where the range represents the forcing from two parameterizations for ice nucleation. The sign of the forcing in the mass-only version of the model depends on which ice nucleation parameterization is used and can be either positive or negative. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-10
    Description: Forest fires in Alaska and western Canada represent important sources of aerosols and trace gases in North America. Among the largest uncertainties when modeling forest fire effects are the timing and injection height of biomass burning emissions. Here we simulate CO and aerosols over North America during the 2004 fire season, using the GEOS-Chem chemical transport model. We apply different temporal distributions and injection height profiles to the biomass burning emissions, and compare model results with satellite-, aircraft-, and ground-based measurements. We find that averaged over the fire season, the use of finer temporal resolved biomass burning emissions usually decreases CO and aerosol concentrations near the fire source region, and often enhances long-range transport. Among the individual temporal constraints, switching from monthly to 8-day time intervals for emissions has the largest effect on CO and aerosol distributions, and shows better agreement with measured day-to-day variability. Injection height substantially modifies the surface concentrations and vertical profiles of pollutants near the source region. Compared with CO, the simulation of black carbon aerosol is more sensitive to the temporal and injection height distribution of emissions. The use of MISR-derived injection heights improves agreement with surface aerosol measurements near the fire source. Our results indicate that the discrepancies between model simulations and MOPITT CO measurements near the Hudson Bay can not be attributed solely to the representation of injection height within the model. Frequent occurrence of strong convection in North America during summer tends to limit the influence of injection height parameterizations of fire emissions in Alaska and western Canada with respect to CO and aerosol distributions over eastern North America.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-11-05
    Description: Large intra-season differences in mixing ratios of CO and O3 were detected at Miyun, a rural site north of Beijing, in summer 2006. Despite an increase in mean daytime mixing ratio of CO from 500 ppbv in June to 700 ppbv in July, mean daytime O3 dropped from 67 ppbv in June to 50 ppbv in July and August. The observed changes in CO and O3 are attributed to the influence of the summer monsoonal circulation that develops over the North China Plain in July. Photochemical production of O3 is reduced as a consequence of increased cloudiness during July and August, as indicated by the strong negative correlation observed between O3 and satellite observations of cloud optical depth, with cloudiness having little effect on CO. The analysis suggests a strategy for emission controls that could be implemented in an economically efficient manner to minimize the frequency of high levels of O3 during summer in Beijing.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-05-27
    Description: The Tibetan Plateau is a key region of land-atmosphere interactions, as it provides an elevated heat source to the middle-troposphere. The Plateau surfaces are typically characterized by alpine meadows and grasslands in the central and eastern part while by alpine deserts in the western part. This study evaluates performance of three state-of-the-art land surface models (LSMs) for the Plateau typical land surfaces. The LSMs of interest are SiB2 (the Simple Biosphere), CoLM (Common Land Model), and Noah. They are run at typical alpine meadow sites in the central Plateau and typical alpine desert sites in the western Plateau. The identified key processes and modeling issues are as follows. First, soil stratification is a typical phenomenon beneath the alpine meadows, with dense roots and soil organic matters within the topsoil, and it controls the profile of soil moisture in the central and eastern Plateau; all models, when using default parameters, significantly under-estimate the soil moisture within the topsoil. Second, a soil surface resistance controls the surface evaporation from the alpine deserts but it has not been reasonably modeled in LSMs; an advanced scheme for soil water flow is implemented in a LSM, based on which the soil resistance is determined from soil water content and meteorological conditions. Third, an excess resistance controls sensible heat fluxes from dry bare-soil or sparsely vegetated surfaces, and all LSMs significantly under-predict the ground-air temperature gradient, which would result in higher net radiation, lower soil heat fluxes and thus higher sensible heat fluxes in the models. A parameterization scheme for this resistance has been shown to be effective to remove these biases.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-02-27
    Description: The Tibetan Plateau is a key region of land-atmosphere interactions, as it provides an elevated heat source to the middle-troposphere. The Plateau surfaces are typically characterized by alpine meadows and grasslands in the central and eastern part while by alpine deserts in the western part. This study evaluates performance of three state-of-the-art land surface models (LSMs) for the Plateau typical land surfaces. The LSMs of interest are SiB2 (the Simple Biosphere), CoLM (Common Land Model), and Noah. They are run with default parameters at typical alpine meadow sites in the central Plateau and typical alpine desert sites in the western Plateau. The recognized key processes and modeling issues are as follows. First, soil stratification is a typical phenomenon beneath the alpine meadows, with dense roots and soil organic matters within the topsoil, and it controls the profile of soil moisture in the central and eastern Plateau; all models significantly under-estimate the soil moisture within the topsoil. Second, a soil surface resistance controls the surface evaporation from the alpine deserts but it has not been reasonably modeled in LSMs; a new scheme is proposed to determine this resistance from soil water content. Third, an excess resistance controls sensible heat fluxes from dry bare-soil or sparsely vegetated surfaces, and all LSMs significantly under-predict the ground-air temperature difference in the daytime. A parameterization scheme for this resistance has been shown effective to remove this bias.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-06-27
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...