ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9)
  • Cambridge University Press  (9)
  • 2020-2023
  • 2005-2009  (7)
  • 2000-2004  (2)
Collection
  • Articles  (9)
Years
Year
  • 1
    Publication Date: 2007-06-14
    Description: Direct numerical simulations (DNS) of stenotic flows under conditions of steady inlet flow were discussed in Part 1 of this study. DNS of pulsatile flow through the 75% stenosed tube (by area) employed for the computations in Part 1 is examined here. Analogous to the steady flow results, DNS predicts a laminar post-stenotic flow field in the case of pulsatile flow through the axisymmetric stenosis model, in contrast to previous experiments, in which intermittent disturbed flow regions and turbulent breakdown were observed in the downstream region. The introduction of a stenosis eccentricity, that was 5% of the main vessel diameter at the throat, resulted in periodic, localized transition to turbulence. Analysis in this study indicates that the early and mid-acceleration phases of the time period cycle were relatively stable, with no turbulent activity in the post-stenotic region. However, towards the end of acceleration, the starting vortex, formed earlier as the fluid accelerated through the stenosis at the beginning of acceleration, started to break up into elongated streamwise structures. These streamwise vortices broke down at peak flow, forming a turbulent spot in the post-stenotic region. In the early part of deceleration there was intense turbulent activity within this spot. Past the mid-deceleration phase, through to minimum flow, the inlet flow lost its momentum and the flow field began to relaminarize. The start of acceleration in the following cycle saw a recurrence of the entire process of a starting structure undergoing turbulent breakdown and subsequent relaminarization of the post-stenotic flow field. Peak wall shear stress (WSS) levels occurred at the stenosis throat, with the rest of the vessel experiencing much lower levels. Turbulent breakdown at peak flow resulted in a sharp amplification of instantaneous WSS magnitudes across the region corresponding to the turbulent spot, accompanied by large axial and circumferential fluctuations, even while ensemble-averaged axial shear stresses remained mostly low and negative. WSS levels dropped rapidly after the mid-deceleration phase, when the relaminarization process took over, and were almost identical to laminar, axisymmetric shear levels through most of the acceleration phase.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-06-14
    Description: Direct numerical simulations (DNS) of steady and pulsatile flow through 75% (by area reduction) stenosed tubes have been performed, with the motivation of understanding the biofluid dynamics of actual stenosed arteries. The spectral-element method, providing geometric flexibility and high-order spectral accuracy, was employed for the simulations. The steady flow results are examined here while the pulsatile flow analysis is dealt with in Part 2 of this study. At inlet Reynolds numbers of 500 and 1000, DNS predict a laminar flow field downstream of an axisymmetric stenosis and comparison to previous experiments show good agreement in the immediate post-stenotic region. The introduction of a geometric perturbation within the current model, in the form of a stenosis eccentricity that was 5% of the main vessel diameter at the throat, resulted in breaking of the symmetry of the post-stenotic flow field by causing the jet to deflect towards the side of the eccentricity and, at a high enough Reynolds number of 1000, jet breakdown occurred in the downstream region. The flow transitioned to turbulence about five diameters away from the stenosis, with velocity spectra taking on a broadband nature, acquiring a -5/3 slope that is typical of turbulent flows. Transition was accomplished by the breaking up of streamwise, hairpin vortices into a localized turbulent spot, reminiscent of the turbulent puff observed in pipe flow transition, within which r.m.s. velocity and turbulent energy levels were highest. Turbulent fluctuations and energy levels rapidly decayed beyond this region and flow relaminarized. The acceleration of the fluid through the stenosis resulted in wall shear stress (WSS) magnitudes that exceeded upstream levels by more than a factor of 30 but low WSS levels accompanied the flow separation zones that formed immediately downstream of the stenosis. Transition to turbulence in the case of the eccentric stenosis was found to be manifested as large temporal and spatial gradients of shear stress, with significant axial and circumferential variations in instantaneous WSS.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-09-28
    Description: We study the linear temporal hydrodynamic stability in the Rayleigh-Bénard problem for a compressible fluid (a perfect gas) under marginally super-adiabatic conditions, i.e. when the ambient temperature gradient only slightly exceeds the adiabatic gradient and then only within the fluid adjacent to the upper (cold) wall. The onset of convection in this limit demonstrates some unique features which differ qualitatively from those of the familiar Boussinesq approximation. Thus, the ensuing convection is effectively confined to a narrow domain of the fluid close to the upper wall and is characterized by large wavenumbers. Furthermore, these distinct attributes persist with diminishing temperature difference, implying that the prevailing generalized Boussinesq approximation (based on the use of the potential temperature gradient) is non-uniform in the present limit. This non-uniformity is resolved in terms of the small yet significant variations of fluid properties (which are commonly neglected). We comment on the analogy between the present problem and the Taylor-Couette problem for a viscous incompressible fluid within a narrow gap between counter-rotating cylinders. We briefly discuss the potential relevance of the present limit to some recent observations of the onset of convection within near-critical fluids. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-09-24
    Description: We consider the linear temporal stability of a Couette flow of a Maxwell gas within the gap between a rotating inner cylinder and a concentric stationary outer cylinder both maintained at the same temperature. The neutral curve is obtained for arbitrary Mach (Ma) and arbitrarily small Knudsen (Kn) numbers by use of a 'slip-flow' continuum model and is verified via comparison to direct simulation Monte Carlo results. At subsonic rotation speeds we find, for the radial ratios considered here, that the neutral curve nearly coincides with the constant-Reynolds-number curve pertaining to the critical value for the onset of instability in the corresponding incompressible-flow problem. With increasing Mach number, transition is deferred to larger Reynolds numbers. It is remarkable that for a fixed Reynolds number, instability is always eventually suppressed beyond some supersonic rotation speed. To clarify this we examine the variation with increasing (Ma) of the reference Couette flow and analyse the narrow-gap limit of the compressible TC problem. The results of these suggest that, as in the incompressible problem, the onset of instability at supersonic speeds is still essentially determined through the balance of inertial and viscous-dissipative effects. Suppression of instability is brought about by increased rates of dissipation associated with the elevated bulk-fluid temperatures occurring at supersonic speeds. A useful approximation is obtained for the neutral curve throughout the entire range of Mach numbers by an adaptation of the familiar incompressible stability criteria with the critical Reynolds (or Taylor) numbers now based on average fluid properties. The narrow-gap analysis further indicates that the resulting approximate neutral curve obtained in the (Ma, Kn) plane consists of two branches: (i) the subsonic part corresponding to a constant ratio (Ma/Kn) (i.e. a constant critical Reynolds number) and (ii) a supersonic branch which at large Ma values corresponds to a constant product Ma Kn. Finally, our analysis helps to resolve some conflicting views in the literature regarding apparently destabilizing compressibility effects. © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-10-14
    Description: The classic hydrodynamic Hele-Shaw problem is revisited in the context of evaluating the viscous resistance to low-Mach compressible viscous gas flows through shallow non-uniform micro-fluidic configurations. Our recent study of gas flows through constricted shallow micro-channels indicates that the failure of the standard Hele-Shaw approximation to satisfy the no-slip boundary condition at the sidewalls severely restricts its applicability. To overcome this we have extended the asymptotic scheme to incorporate an inner solution in the vicinity of the sidewalls (which, in turn, allows for the characterization of the effects of channel cross-section geometry) and its matching to an outer correction. We have compared the results of the present asymptotic analysis to existing exact analytic and numerical results for straight and uniform channels and to finite-element simulations for a 90° turn and a symmetric T-junction, which demonstrate a remarkably improved accuracy relative to the standard Hele-Shaw approximation. This suggests the present scheme as a viable alternative for the rapid performance estimate of micro-fluidic devices. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-09-10
    Description: We calculate the average swimming velocity and dispersion rate characterizing the transport of swimming gyrotactic micro-organisms suspended in homogeneous (simple) shear. These are requisite effective phenomenological coefficients for the macroscale continuum modelling of bioconvection and related collective-dynamics phenomena. The swimming cells are modelled as rigid axisymmetric dipolar particles subject to stochastic Brownian rotations. Calculations are effected via application of the generalized Taylor dispersion scheme. Attention is focused on finite (as opposed to weak) shear. Results indicate that the largest transverse average swimming velocities (essential to gyrotactic focusing) appear shortly after transition from the 'tumbling' mode of motion to cells swimming in the equilibrium direction. At sufficiently large shear rates, dispersivity is not monotonically decreasing with external-field intensity. Exceptional dispersion rates which are unique to non-spherical cells appear in the 'intermediate domain' of external fields. These are rationalized in terms of the corresponding deterministic problem (i.e. in the absence of diffusion) when cell rotary motion is governed by the simultaneous coexistence of multiple stable attractors.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-01-10
    Description: The effects of mass transfer (e.g. via evaporation) of surface-active solutes on the hydrodynamic stability of capillary liquid jets are studied. A linear temporal stability analysis is carried out yielding evolution equations for systems satisfying general nonlinear kinetic adsorption relations and accompanying surface constitutive equations. The discussion of the instability mechanism associated with the Marangoni effect clarifies that solute transfer into the jet is destabilizing whereas transfer in the opposite direction reduces instability. The general analysis is illustrated by a system satisfying Langmuir-type kinetic relations. Contrary to a clean system (i.e. in the absence of surfactants), reduced jet viscosity may lead to a substantial reduction in perturbation growth. Furthermore, the Marangoni effect gives rise to an overstability mechanism whereby perturbations whose dimensionless wavenumbers exceed unity grow with time through oscillations of increasing amplitude. The common diffusion-control approximation constitutes an upper bound which substantially overestimates the actual growth of perturbations. Considering solutes belonging to the homologous series of normal alcohols in water-air systems, the intermediate cases (e.g. hexanol-water-air which is 'mixed-control') are the most susceptible to Marangoni instability.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-04-25
    Description: We study the viscous compressible flow through micro-channels of non-uniform cross-section. A lubrication approximation is applied to analyse the flow through shallow configurations whose gap width is small in comparison with the other characteristic dimensions. Focusing on channels with a symmetric constriction (or cavity) we obtain the solution to the problem by means of a Schwarz - Christoffel transformation. This analytic solution is verified by examining the convergence of numerical simulations with diminishing Reynolds number and gap width. Explicit closed-form expressions for the pressure-head and mass-flow-rate losses in terms of the geometrical parameters characterizing the constriction are presented and discussed in the context of experimental data existing in the literature. © 2008 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-02-10
    Description: We have studied the temporal evolution of electro-kinetic flows in the vicinity of polarizable dielectric solids following the application of a 'weak' transient electric field. To obtain a macro-scale description in the limit of narrow electric double layers (EDLs), we have derived a pair of effective transient boundary conditions directly connecting the electric potentials across the EDL. Within the framework of the above assumptions, these conditions apply to a general transient electro-kinetic problem involving dielectric solids of arbitrary geometry and relative permittivity. Furthermore, the newly derived scheme is applicable to general transient and spatially non-uniform external fields. We examine the details of the physical mechanisms involved in the relaxation of the induced-charging process of the EDL adjacent to polarizable dielectric solids. It is thus established that the time scale characterizing the electrostatic relaxation increases with the dielectric constant of the solid from the Debye time (for the diffusion across the EDL) through the 'intermediate' scale (proportional to the product of the respective Debye- and geometric-length scales). Thus, the present rigorous analysis substantiates earlier results largely obtained by heuristic use of equivalent RC-circuit models. Furthermore, for typical values of ionic diffusivity and kinematic viscosity of the electrolyte solution, the latter time scale is comparable to the time scale of viscous relaxation in problems concerning microfluidic applications or micro-particle dynamics. The analysis is illustrated for spherical micro-particles. Explicit results are thus presented for the temporal evolution of electro-osmosis around a dielectric sphere immersed in unbounded electrolyte solution under the action of a suddenly applied uniform field, combining both induced charge and 'equilibrium' (fixed charge) contributions to the zeta potential. It is demonstrated that, owing to the time delay of the induced-EDL charging, the 'equilibrium' contribution to fluid motion (which is linear in the electric field) initially dominates the (quadratic) 'induced' contribution. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...