ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1)
  • Statistics and Probability; Earth Resources and Remote Sensing; Meteorology and Climatology  (1)
  • 2020-2023
  • 2015-2019  (1)
Collection
  • Other Sources  (1)
Keywords
Years
  • 2020-2023
  • 2015-2019  (1)
Year
  • 1
    Publication Date: 2019-07-13
    Description: A data assimilation framework was implemented with the objective of obtaining high resolution retrospective snow water equivalent (SWE) estimates over several Andean study basins. The framework integrates Landsat fractional snow covered area (fSCA) images, a land surface and snow depletion model, and the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis as a forcing data set. The outputs are SWE and fSCA fields (1985-2015) at a resolution of 90 m that are consistent with the observed depletion record. Verification using in-situ snow surveys showed significant improvements in the accuracy of the SWE estimates relative to forward model estimates, with increases in correlation (0.49-0.87) and reductions in root mean square error (0.316 m to 0.129 m) and mean error (-0.221 m to 0.009 m). A sensitivity analysis showed that the framework is robust to variations in physiography, fSCA data availability and a priori precipitation biases. Results from the application to the headwater basin of the Aconcagua River showed how the forward model versus the fSCA-conditioned estimate resulted in different quantifications of the relationship between runoff and SWE, and different correlation patterns between pixel-wise SWE and ENSO. The illustrative results confirm the influence that ENSO has on snow accumulation for Andean basins draining into the Pacific, with ENSO explaining approximately 25% of the variability in near-peak (1 September) SWE values. Our results show how the assimilation of fSCA data results in a significant improvement upon MERRA-forced modeled SWE estimates, further increasing the utility of the MERRA data for high-resolution snow modeling applications.
    Keywords: Statistics and Probability; Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN42237 , Water Resources Research (ISSN 0043-1397) (e-ISSN 1944-7973); 52; 4; 2582-2600
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...