ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (18)
  • Copernicus Publications (EGU)  (14)
  • GSA, Geological Society of America  (4)
  • 2020-2023  (1)
  • 2015-2019  (17)
Collection
  • Other Sources  (18)
Source
Years
Year
  • 1
    Publication Date: 2020-02-06
    Description: This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850–2014), and future (2015–2300) simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunder-minimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models. For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical one (NRLTSI2–NRLSSI2) and a semi-empirical one (SATIRE). A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m−2. The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of −0.04 W m−2. In the 200–400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %). We compare the climatic effects of the CMIP6 solar forcing dataset to its CMIP5 predecessor by using time-slice experiments of two chemistry–climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of −0.35 K day−1 at the stratopause), cooler stratospheric temperatures (−1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (−3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day−1 at the stratopause), temperatures ( ∼  1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset. CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to prescribe SSI changes and include solar-induced stratospheric ozone variations, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. We show that monthly-mean solar-induced ozone variations are implicitly included in the SPARC/CCMI CMIP6 Ozone Database for historical simulations, which is derived from transient chemistry–climate model simulations and has been developed for climate models that do not calculate ozone interactively. CMIP6 models without chemistry that perform a preindustrial control simulation with time-varying solar forcing will need to use a modified version of the SPARC/CCMI Ozone Database that includes solar variability. CMIP6 models with interactive chemistry are also encouraged to use the particle forcing datasets, which will allow the potential long-term effects of particles to be addressed for the first time. The consideration of particle forcing has been shown to significantly improve the representation of reactive nitrogen and ozone variability in the polar middle atmosphere, eventually resulting in further improvements in the representation of solar climate variability in global models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-02
    Description: Large calderas are among the Earth's major volcanic features. They are associated with large magma reservoirs and elevated geothermal gradients. Caldera-forming eruptions result from the withdrawal and collapse of the magma chambers and produce large-volume pyroclastic deposits and later-stage deformation related to post-caldera resurgence and volcanism. Unrest episodes are not always followed by an eruption; however, every eruption is preceded by unrest. The Campi Flegrei caldera (CFc), located along the eastern Tyrrhenian coastline in southern Italy, is close to the densely populated area of Naples. It is one of the most dangerous volcanoes on Earth and represents a key example of an active, resurgent caldera. It has been traditionally interpreted as a nested caldera formed by collapses during the 100–200 km3 Campanian Ignimbrite (CI) eruption at ∼39 ka and the 40 km3 eruption of the Neapolitan Yellow Tuff (NYT) at ∼15 ka. Recent studies have suggested that the CI may instead have been fed by a fissure eruption from the Campanian Plain, north of Campi Flegrei. A MagellanPlus workshop was held in Naples, Italy, on 25–28 February 2017 to explore the potential of the CFc as target for an amphibious drilling project within the International Ocean Discovery Program (IODP) and the International Continental Drilling Program (ICDP). It was agreed that Campi Flegrei is an ideal site to investigate the mechanisms of caldera formation and associated post-caldera dynamics and to analyze the still poorly understood interplay between hydrothermal and magmatic processes. A coordinated onshore–offshore drilling strategy has been developed to reconstruct the structure and evolution of Campi Flegrei and to investigate volcanic precursors by examining (a) the succession of volcanic and hydrothermal products and related processes, (b) the inner structure of the caldera resurgence, (c) the physical, chemical, and biological characteristics of the hydrothermal system and offshore sediments, and (d) the geological expression of the phreatic and hydromagmatic eruptions, hydrothermal degassing, sedimentary structures, and other records of these phenomena. The deployment of a multiparametric in situ monitoring system at depth will enable near-real-time tracking of changes in the magma reservoir and hydrothermal system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-23
    Description: The GEOVIDE cruise, a collaborative project within the framework of the international GEOTRACES programme, was conducted along the French-led section in the North Atlantic Ocean (Section GA01), between 15 May and 30 June 2014. In this Special Issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among seventeen articles. Here, the scientific context, project objectives and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-18
    Description: The quantitative reconstruction of past seawater salinity has yet to be achieved and the search for a direct and independent salinity proxy is ongoing. Recent culture and field studies show a significant positive correlation of Na/Ca with salinity in benthic and planktonic foraminiferal calcite. For accurate paleoceanographic reconstructions, consistent and reliable calibrations are necessary, which are still missing. In order to assess the reliability of foraminiferal Na/Ca as a direct proxy for seawater salinity, this study presents electron microprobe Na/Ca data, measured on cultured specimens of Trilobatus sacculifer. The culture experiments were conducted over a wide salinity range of 26 to 45, while temperature was kept constant. To further understand potential controlling factors of Na incorporation, measurements were also performed on foraminifera cultured at various temperatures in the range of 19.5 °C to 29.5 °C under constant salinity conditions. Foraminiferal Na/Ca ratios positively correlate with seawater salinity (Na/Caforam = 0.97 + 0.115 ⋅ Salinity, R = 0.97, p 〈 0.005). Temperature on the other hand exhibits no statistically significant relationship with Na/Ca ratios indicating salinity to be the dominant factor controlling Na incorporation. The culturing results are corroborated by measurements on T. sacculifer from Caribbean and Gulf of Guinea surface sediments. In conclusion, planktonic foraminiferal Na/Ca can be applied as a reliable proxy for reconstructing sea surface salinities, albeit species-specific calibrations might be necessary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: In the Ionian Sea, one of the most seismically active regions in the Mediterranean, subduction is commonly associated with uplift of coastal mountains, enhanced erosion, and seismic activity along the Calabrian Arc and Hellenic Arc, thus potentially resulting in repetitive mass failures. Some of the turbidites observed in the deep basins are thick and prominent on seismic records because of the acoustic transparency of their upper structureless mud layer. Our high-resolution study of the most recent of these megabeds, the homogenite Augias turbidite (HAT), provides key proxies to identify pelagic sediments deposited following the catastrophic causative event. Radiometric dating in an area 〉150,000 km2 indicates that the different Mediterranean so-called homogenite deposits are in fact synchronous and were deposited during a single basin-wide event within the time window A.D. 364–415. Unlike interpretations that relate this turbidite to different triggering events, including the Santorini caldera collapse, the turbidite can be traced back to a large tsunami sourced from the A.D. 365 Crete megathrust earthquake. Correlation of the single-event HAT over a wide area of the Mediterranean, from the northern Ionian Sea to the Mediterranean Ridge and the anoxic Tyro Basin south of Crete, suggests that the A.D. 365 Crete earthquake and tsunami must have produced devastating effects, including widespread massive sediment remobilization in the eastern Mediterranean Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 15 (4). pp. 1783-1794.
    Publication Date: 2020-10-26
    Description: Air-sea dimethylsulfide (DMS) fluxes and bulk air-sea gradients were measured over the Southern Ocean in February-March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (〉 15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m s-1. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind-speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data show no obvious modification of the gas transfer-wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: The entry of groundwater into volcanic conduits has been proposed as a major modifying agent of eruptive dynamics, influencing magma fragmentation and pyroclast dispersion. Although several external water sources and interaction mechanisms have been proposed, the nature and effects of magma-water interaction are still largely unclear, as well as its controlling factors. A common postulate for phreatomagmatic activity to occur is that pressure in a conduit crosscutting a subsurface aquifer should drop below the aquifer pressure, which depends on the properties of the aquifer and the ascending magma. In agreement with most phreatomagmatic eruptions, we show that the injection of large mass fractions of groundwater during silicic explosive eruptions (e.g., 〉5 wt%) is only physically feasible for low-eruption-rate events; while high-intensity eruptions with evidence of magma-water interaction are probably related to other interaction mechanisms (e.g., the involvement of surface water or the destabilization of aquifer-hosting rocks during collapse phases). Because conditions for access of groundwater to the conduit are preferably reached above the fragmentation level, magma-water interaction seems not to induce dramatic changes to the features of a primary ‘dry’ vesiculation, as commonly claimed. Hence, the low vesicularity indexes often attributed to phreatomagmatic eruptions are difficult to explain by the quenching effect of groundwater on not-fully developed vesicularity. Instead, these indexes may be related to the low eruption rates needed for effective magma-water interaction, generally characterized by significant lateral gradients of vesicularity in narrow conduits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-08
    Description: Based on swath bathymetry, two-dimensional, high-resolution seismic reflection profiles, and Ocean Drilling Program/Deep Sea Drilling Project (ODP/DSDP) data, we describe a seafloor honeycomb pattern and propose a model for its formation in Pliocene–Miocene carbonate deposited on the uneven oceanic basement of the Carnegie Ridge (offshore Ecuador). Hydrothermal fluids derived from the basement aquifer fractured and dissolved carbonate sediment, creating seafloor pits above basements highs. Fluids expelled along polygonal faults may have assisted the nucleation of seafloor depressions. At the Pliocene-Pleistocene boundary, strong bottom currents scoured previously damaged sediments, enlarging the initial depressions and producing the seafloor honeycomb pattern. This regional erosive episode was contemporaneous with the final closing of the Isthmus of Panama and the clogging of the Ecuador Trench by the subduction of the Carnegie Ridge, so that the honeycomb pattern may be viewed as a regional marker of these two geodynamic events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-08
    Description: Ice sheet numerical modeling is an important tool to estimate the dynamic contribution of the Antarctic ice sheet to sea level rise over the coming centuries. The influence of initial conditions on ice sheet model simulations, however, is still unclear. To better understand this influence, an initial state intercomparison exercise (initMIP) has been developed to compare, evaluate, and improve initialization procedures and estimate their impact on century-scale simulations. initMIP is the first set of experiments of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which is the primary Coupled Model Intercomparison Project Phase 6 (CMIP6) activity focusing on the Greenland and Antarctic ice sheets. Following initMIP-Greenland, initMIP-Antarctica has been designed to explore uncertainties associated with model initialization and spin-up and to evaluate the impact of changes in external forcings. Starting from the state of the Antarctic ice sheet at the end of the initialization procedure, three forward experiments are each run for 100 years: a control run, a run with a surface mass balance anomaly, and a run with a basal melting anomaly beneath floating ice. This study presents the results of initMIP-Antarctica from 25 simulations performed by 16 international modeling groups. The submitted results use different initial conditions and initialization methods, as well as ice flow model parameters and reference external forcings. We find a good agreement among model responses to the surface mass balance anomaly but large variations in responses to the basal melting anomaly. These variations can be attributed to differences in the extent of ice shelves and their upstream tributaries, the numerical treatment of grounding line, and the initial ocean conditions applied, suggesting that ongoing efforts to better represent ice shelves in continental-scale models should continue.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: The fate of the organic matter (OM) produced by marine life controls the major biogeochemical cycles of the Earth's system. The OM produced through photosynthesis is either preserved, exported towards sediments or degraded through remineralisation in the water column. The productive eastern boundary upwelling systems (EBUSs) associated with oxygen minimum zones (OMZs) would be expected to foster OM preservation due to low O2 conditions. But their intense and diverse microbial activity should enhance OM degradation. To investigate this contradiction, sediment traps were deployed near the oxycline and in the OMZ core on an instrumented moored line off Peru. Data provided high-temporal-resolution O2 series characterising two seasonal steady states at the upper trap: suboxic ([O2] 〈 25µmolkg−1) and hypoxic–oxic (15 〈 [O2] 〈 160µmolkg−1) in austral summer and winter–spring, respectively. The OMZ vertical transfer efficiency of particulate organic carbon (POC) between traps (Teff) can be classified into three main ranges (high, intermediate, low). These different Teff ranges suggest that both predominant preservation (high Teff 〉 50%) and remineralisation (intermediate Teff 20 〈 50% or low Teff 〈 6%) configurations can occur. An efficient OMZ vertical transfer (Teff 〉 50%) has been reported in summer and winter associated with extreme limitation in O2 concentrations or OM quantity for OM degradation. However, higher levels of O2 or OM, or less refractory OM, at the oxycline, even in a co-limitation context, can decrease the OMZ transfer efficiency to below 50%. This is especially true in summer during intraseasonal wind-driven oxygenation events. In late winter and early spring, high oxygenation conditions together with high fluxes of sinking particles trigger a shutdown of the OMZ transfer (Teff 〈 6%). Transfer efficiency of chemical elements composing the majority of the flux (nitrogen, phosphorus, silica, calcium carbonate) follows the same trend as for carbon, with the lowest transfer level being in late winter and early spring. Regarding particulate isotopes, vertical transfer of δ15N suggests a complex pattern of 15N impoverishment or enrichment according to Teff modulation. This sensitivity of OM to O2 fluctuations and particle concentration calls for further investigation into OM and O2-driven remineralisation processes. This should include consideration of the intermittent behaviour of OMZ towards OM demonstrated in past studies and climate projections.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...