ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (56)
  • 2020-2023  (1)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Highlights • Atlantic and Mediterranean water-mass interface depth affected coral mound growth. • Sapropel derived events had a detrimental influence on coral mound development. • A shift in the reef-building dominating coral species occurred during the Holocene. • The southern mound has been subjected to less favourable environmental conditions. Abstract Cold-water coral mounds are key hot-spots of deep ocean biodiversity and also important archives of past climatic conditions. Nonetheless, the paleo-oceanographic setting in which coral mounds developed in the Mediterranean Sea during the last 500 ka still needs to be properly understood. This study describes the coral deposits and corresponding ages of two on-mound gravity cores acquired from opposite sectors of the newly discovered Cabliers Coral Mound Province (CMP, Alboran Sea, W Mediterranean). U–Th data revealed Pleistocene-aged corals covering mound formation periods from 〉389 to 9.3 ka BP and from 13.7 to 0.3 ka BP in the southern and northern mounds respectively. The coral-rich deposits of the cores were mainly dominated by Desmophyllum pertusum, although in some sections concurrent with the Middle Pleistocene and the Holocene, other corals such as Dendrophyllia cornigera and Madrepora oculata also appeared as dominating species. Coral mound formation stages generally occurred during deglacials and temperate interstadial (3.5–4.1 δ18O‰) periods, whereas during interglacials (〈3.5 δ18O‰) coral mound formation only occurred in the northern and shallower mound. We interpret this to indicate that the shoaling of the interface between Atlantic (AW) and Levantine Intermediate Waters (LIW) during interglacial periods prevented the corals in the southern CMP from acquiring sufficient food supply, thus causing periods of coral mound stagnation. Similarly, the interruption in LIW formation throughout sapropel events also coincides with coral mound stagnation phases. This suggests that sapropel-derived processes, which originated in the eastern Mediterranean, likely affected the entire Mediterranean basin and further supports the role of LIW as a conveyor belt facilitating cold-water coral growth in the Mediterranean Sea. Overall, we show that these coral mounds yield important insights into how local changes in oceanographic conditions can influence coral mound development.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2022-03-17
    Description: A high resolution study of calcareous nannofossils has been performed on samples from the Sapropel S1interval deposited in the North Ionian Sea, with the aim to assess the paleoenvironmental changes in the photic zone during this crucial interval in Mediterranean circulation. Calcareous nannofossil data have been integrated with planktonic foraminiferal data recently published from which the paleoclimatic curve has been constructed. Placoliths (namely Emiliania huxleyi) and Florisphaera profunda distributions, along with that of planktonic foraminifer Globigerinoides ruber white, evidence that, after a progressive weakening of surface water mixing, a deep chlorophyll maximum developed just prior to the sapropel deposition. We suggest that these changes took place as a response to enhanced precipitation conditions and riverine discharge as testified by increasing trend of reworked coccoliths and the occurrence of lower salinity taxon Braarudosphaera bigelowii. Calcareous nannofossils also point out that the oceanographic (water column stratification, reduced bottom water ventilation) and biogeochemical (increased primary production) processes that occurred during the S1 formation were particularly dominant during the earliest part of the older S1 warm phase (S1a). Our results support than some reventilation events of the shallow depth of studied site (665 m) occurred to some extent, particularly during the final phases of S1a. The distribution of holococcoliths, more abundant during the cold interruption phase S1i, seems confirm that the preservation of these tiny and delicate coccoliths, highly susceptible to dissolution, is enhanced under seafloor re-ventilation conditions. Finally, we tentatively suggest that preservation also plays a significant role in the distribution of the warm upper photic zone taxa, particularly during the warm S1b interval.
    Description: Published
    Description: 103599
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: Sapropel S1 ; Calcareous nannofossils ; Planktonic foraminifera ; North Ionian Sea ; Mediterranean ; Hydrosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-13
    Description: Down core marine sediment samples from ODP Site 1240 have been used for the analysis of the C28 and C30 1,14-diols, the C37:2 and C37:3 long chain ketones (alkenones) and the 24-methylcholesta-5,22-dien-3β-ol (brassicasterol) as proxies of primary productivity. Alkenones were also used to infer past sea surface temperatures through the unsaturation index UK'37. The C29 n-alkane was measured to obtain information on continental material inputs. δD of C37-alkenones and δ¹⁸O-seawater of Globigerinoides ruber were used as indicators of relative salinity changes. This data has been used for the study of the period between 150 and 110 ka (sediment depth from ca. 13 to 17 m), according to the age model from Rippert et al. (2017).
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-27
    Keywords: 98; AGE; Benthic foraminifera; CALYPSO; Calypso Corer; Counting 〉63 µm fraction; Foraminifera, benthic; Grain size data; Gyroidina spp.; High oxygen indicators; IMAGES V; Low oxygen indicators; Marion Dufresne (1995); MD114; MD99-2343; North Minorca; Stable isotopes; TOC
    Type: Dataset
    Format: text/tab-separated-values, 400 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-27
    Keywords: 98; AGE; Benthic foraminifera; CALYPSO; Calypso Corer; Grain size data; IMAGES V; Marion Dufresne (1995); MD114; MD99-2343; North Minorca; Size fraction 〉 0.010 mm; Stable isotopes; TOC
    Type: Dataset
    Format: text/tab-separated-values, 188 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pérez-Asensio, José N; Frigola, Jaime; Pena, Leopoldo D; Sierro, Francisco Javier; Reguera, Maria Isabel; Rodríguez-Tovar, Francisco Javier; Dorador, Javier; Asioli, Alessandra; Kuhlmann, Jannis; Huhn, Katrin; Cacho, Isabel (2020): Changes in western Mediterranean thermohaline circulation in association with a deglacial Organic Rich Layer formation in the Alboran Sea. Quaternary Science Reviews, 228, 106075, https://doi.org/10.1016/j.quascirev.2019.106075
    Publication Date: 2023-06-05
    Description: The accumulation of an Organic Rich Layer (ORL) during the last deglaciation in the Alboran Sea (western Mediterranean Sea) and its link to changes in deep and intermediate water circulation are here investigated. Benthic foraminiferal assemblages and the shallow infaunal foraminifer Uvigerina peregrina δ13C record support the establishment of sustained high organic matter fluxes, and thus eutrophic conditions at the sea floor, during the late phase of the ORL (Younger Dryas to early Holocene periods). Since organic matter fluxes were lower (mesotrophic conditions) during the Bølling-Allerød period, they cannot be solely responsible for the ORL initiation. Geochemical, sedimentological and micropalaeontological proxies support a major weakening of the deep-water convection in the Gulf of Lion as the main driver for the development of poorly-ventilated conditions from intermediate depths (946 m) to the deep western Mediterranean basin that promoted the beginning of the ORL deposition. Nevertheless, a better ventilation at intermediate depths was established during the late ORL, while the deep basin remained poorly ventilated. We propose that our data reflect the arrival of a new better-ventilated intermediate water mass analogue to the current Levantine Intermediate Water (LIW) and/or a new intermediate water mass from the Gulf of Lion. The ultimate source of this water mass needs to be further explored but chronologies of the changes recorded here indicate that intermediate and deep ventilation phases were decoupled between the western and eastern Mediterranean basins during the deglaciation and early-middle Holocene.
    Keywords: Benthic foraminifera; Grain size data; Stable isotopes; TOC
    Type: Dataset
    Format: application/zip, 18 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-09
    Keywords: 98; Ammodiscus spp.; Ammolagena clavata; Ammonia falsobeccarii; Amphicoryna scalaris; Articulina tubulosa; Astacolus spp.; Astrononion stelligerum; Benthic foraminifera; Biloculinella elongata; Biloculinella globulus; Biloculinella wiesneri; Bolivina dilatata; Bolivina pseudoplicata; Bolivina spathulata; Brizalina alata; Brizalina subaenariensis; Bulimina aculeata; Bulimina alazanensis; Bulimina inflata; Bulimina marginata; Bulimina striata; CALYPSO; Calypso Corer; Cassidulina crassa; Cassidulina laevigata; Chilostomella oolina; Cibicides lobatulus; Cibicidoides pachyderma; Cibicidoides wuellerstorfi; Cornuspira foliacea; Cornuspira involvens; Cornuspira spp.; Counting 〉63 µm fraction; Cribrononion kerguelenense; Cycloforina spp.; Cyclophtalmidium spp.; Dentalina aphelis; Dentalina inflexa; Dentalina spp.; DEPTH, sediment/rock; Eggerella bradyi; Elphidium aculeatum; Elphidium advenum; Elphidium complanatum; Elphidium gensenii; Elphidium poeyanum; Fissurina radiata; Fissurina sp.; Foraminifera, benthic; Foraminifera, benthic agglutinated; Foraminifera, benthic indeterminata; Frondicularia spp.; Fursenkoina rotundata; Fursenkoina spp.; Gavelinopsis praegeri; Globobulimina pacifica; Globocassidulina subglobosa; Globulotuba spp.; Glomospira charoides; Grain size data; Gyroidina altiformis; Gyroidina parva; Gyroidinoides spp.; Hansenisca soldanii; Hanzawaia boueana; Hanzawaia spp.; Haplophragmoides spp.; Haynesina germanica; Haynesina spp.; Hoeglundina elegans; Hyalinea balthica; IMAGES V; Karreriella bradyi; Lagena acuticosta; Lagena doveyensis; Lagena hexagona; Lagena hispidula; Lagena sp.; Lagena spp.; Lagena striata; Lagena sulcata; Lenticulina gibba; Lenticulina iota; Lenticulina peregrina; Lenticulina spp.; Marginulina obesa; Marginulina spp.; Marion Dufresne (1995); MD114; MD99-2343; Melonis affinis; Melonis pompilioides; Miliolinella dilatata; Miliolinella elongata; Miliolinella spp.; Miliolinella subrotunda; Neoconorbina terquemi; Nodosaria spp.; Nonionella turgida; Nonion fabum; North Minorca; Nummoloculina sp.; Oolina hexagona; Oolina spp.; Paliolatella sp.; Patellina corrugata; Planorbulina mediterranensis; Polymorphina spp.; Praeglobobulimina pupoides; Procerolagena gracilis; Procerolagena gracillima; Pseudoglandulina glanduliniformis; Pseudotriloculina oblonga; Pullenia bulloides; Pullenia quinqueloba; Pullenia spp.; Pyrgo comata; Pyrgo depressa; Pyrgoella elongata; Pyrgoella sphaera; Pyrgo elongata; Pyrgo lucernula; Pyrgo sarsi; Quinqueloculina jugosa; Quinqueloculina lamarckiana; Quinqueloculina oblonga; Quinqueloculina seminulum; Quinqueloculina sp.; Quinqueloculina spp.; Quinqueloculina ungeriana; Quinqueloculina venusta; Rectuvigerina spp.; Robertina tasmanica; Rosalina auberiana; Rosalina bradyi; Rosalina globularis; Rosalina spp.; Sigmoilopsis schlumbergeri; Siphotextularia spp.; Spiroloculina bradyiana; Spiroloculina tenuiseptata; Spirophthalmidium acutimargo; Spirosigmoilina tenuis; Stable isotopes; Subreophax monile; Textularia pseudorugosa; TOC; Trifarina carinata; Triloculina adriatica; Triloculina sp.; Triloculina spp.; Triloculina tricarinata; Uvigerina mediterranea; Uvigerina peregrina; Uvigerina proboscidea; Valvulineria bradyana
    Type: Dataset
    Format: text/tab-separated-values, 12160 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-10
    Keywords: Adelosina elegans; Alboran Sea; Ammonia falsobeccarii; Ammonia parkinsoniana; Amphicoryna scalaris; Amphicoryna sublineata; Anomalina spp.; Anomalinoides colligerus; Articulina tubulosa; Astacolus spp.; Asterigerinata mamilla; Astrononion stelligerum; Benthic foraminifera; Biloculinella elongata; Biloculinella globulus; Biloculinella spp.; Biloculinella wiesneri; Bolivina dilatata; Bolivina pseudoplicata; Bolivina spathulata; Bolivina spp.; Brizalina alata; Brizalina subaenariensis; Bulimina aculeata; Bulimina alazanensis; Bulimina elongata; Bulimina inflata; Bulimina marginata; Bulimina rostrata; Bulimina striata; CALYPSO; Calypso Corer; Cassidulina crassa; Cassidulina laevigata; Chilostomella oolina; Chilostomella ovoidea; Cibicides lobatulus; Cibicides refulgens; Cibicidoides pachyderma; Cibicidoides wuellerstorfi; Cornuspira carinata; Cornuspira involvens; Counting 〉63 µm fraction; Cribrononion kerguelenense; Dentalina aphelis; Dentalina bradyensis; Dentalina filiformis; Dentalina inflexa; Dentalina spp.; DEPTH, sediment/rock; Discorbinella araucana; Eggerella bradyi; Elphidium aculeatum; Elphidium advenum; Elphidium complanatum; Elphidium depressulum; Elphidium gensenii; Elphidium macellum; Elphidium poeyanum; Elphidium spp.; Eponides spp.; Eubuliminella exilis; Fissurina quadrata; Fissurina sp.; Foraminifera, benthic; Foraminifera, benthic indeterminata; Fursenkoina bradyi; Fursenkoina complanata; Fursenkoina rotundata; Gavelinopsis lobatulus; Gavelinopsis praegeri; Glandulina ovula; Glandulina spp.; Globobulimina pacifica; Globobulimina pyrula; Globulotuba spp.; Grain size data; Gyroidina altiformis; Gyroidina parva; Gyroidina spp.; Hansenisca soldanii; Hanzawaia boueana; Hanzawaia spp.; Haynesina germanica; Haynesina orbicularis; Hoeglundina elegans; Hyalinea balthica; IMAGES I; Karreriella bradyi; Lagena acuticosta; Lagena hispidula; Lagena meridionalis; Lagena semistriata; Lagena sp.; Lagena spp.; Lagena striata; Lagena sulcata; Lenticulina convergens; Lenticulina gibba; Lenticulina iota; Lenticulina peregrina; Lenticulina pliocaena; Lenticulina rotularis; Lenticulina spp.; Lingulina spp.; Marginulina obesa; Marginulina sp.; Marion Dufresne (1995); MD101; MD952043; MD95-2043; Melonis affinis; Melonis pompilioides; Melonis soldanii; Melonis spp.; Miliolinella dilatata; Miliolinella gratta; Miliolinella spp.; Miliolinella webbiana; Milliolinella subrotunda; Neoconorbina marginata; Neoconorbina terquemi; Neolenticulina variabilis; Nonionella sp.; Nonion fabum; Nonionoides turgidus; Nonion spp.; Oolina globosa; Oolina hexagona; Oolina spp.; Oolina squamosa; Paliolatella sp.; Parafissurina felsinea; Parafissurina lateralis; Patellina corrugata; Planorbulina distoma; Planorbulina mediterranensis; Planulina ariminensis; Polymorphina spp.; Praeglobobulimina pupoides; Praeglobobulimina spinescens; Procerolagena clavata; Procerolagena gracillima; Pseudoglandulina glanduliniformis; Pseudotriloculina oblonga; Pullenia bulloides; Pullenia quinqueloba; Pyrgo comata; Pyrgo depressa; Pyrgoella sphaera; Pyrgoella spp.; Pyrgo elongata; Pyrgo laevis; Pyrgo lucernula; Pyrgo murrhina; Pyrgo sarsi; Pyrgo sp.; Pyrulina cylindriformis; Pyrulina fusiformis; Quinqueloculina jugosa; Quinqueloculina laevigata; Quinqueloculina lamarckiana; Quinqueloculina pseudobuchiana; Quinqueloculina seminulum; Quinqueloculina sp.; Quinqueloculina spp.; Quinqueloculina ungeriana; Quinqueloculina venusta; Robertina tasmanica; Rosalina auberiana; Rosalina bradyi; Rosalina globularis; Rosalina spp.; Sigmoilopsis schlumbergeri; Siphotextularia concava; Siphotextularia sp.; Sphaeroidina bulloides; Spirillina vivipara; Spiroloculina bradyiana; Spiroloculina spp.; Spiroloculina tenuiseptata; Spirophthalmidium acutimargo; Spirosigmoilina tenuis; Stable isotopes; Strebloides advenus; Subreophax monile; Textularia mexicana; Textularia spp.; TOC; Trifarina carinata; Triloculina adriatica; Triloculina spp.; Triloculina tricarinata; Triloculinella obliquinodus; Uvigerina hispida; Uvigerina mediterranea; Uvigerina peregrina; Valvulineria bradyana; Valvulineria sp.
    Type: Dataset
    Format: text/tab-separated-values, 18693 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-27
    Keywords: 98; AGE; Benthic foraminifera; Calculated; CALYPSO; Calypso Corer; Grain size data; IMAGES V; Marion Dufresne (1995); MD114; MD99-2343; North Minorca; Sedimentation rate; Stable isotopes; TOC
    Type: Dataset
    Format: text/tab-separated-values, 43 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...