ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • 2020-2024  (6)
  • 2020-2023  (1)
  • 1940-1944
  • 1
    Publication Date: 2023-11-23
    Description: The climatologies of the stratopause height and temperature in the UA‐ICON model are examined by comparing them to 17‐years (2005–2021) of Microwave Limb Sounder (MLS) observations. In addition, the elevated stratopause (ES) event occurrence, their main characteristics, and driving mechanisms in the UA‐ICON model are examined using three 30‐year time‐slice experiments. While UA‐ICON reasonably simulates the large‐scale stratopause properties similar to MLS observations, at polar latitudes in the Southern Hemisphere the stratopause is ∼8 K warmer and ∼3 km higher than observed. A time lag of about two months also exists in the occurrence of the tropical semiannual oscillation of the stratopause compared to the observations. ES events occur in ∼20% of the boreal winters, after major sudden stratospheric warmings (SSWs). Compared to the SSWs not followed by ES events (SSW‐only), the ES events are associated with the persistent tropospheric forcing and prolonged anomalies of the stratospheric jet. Our modeling results suggest that the contributions of both gravity waves (GW)s and resolved waves are important in explaining the enhanced residual circulation following ES events compared to the SSW‐only events but their contributions vary through the lifetime of ES events. We emphasize the role of the resolved wave drag in the ES formation as in the sensitivity test when the non‐orographic GW drag is absent, the anomalously enhanced resolved wave forcing in the mesosphere gives rise to the formation of the elevated stratopause at about 85 km.
    Description: Plain Language Summary: Using 17 years (2005–2021) of Microwave Limb Sounder (MLS) observations, we show negative (cooling stratopause temperatures and decreasing stratopause heights) trends in most regions and seasons. The largest negative trend in the stratopause temperature (by considering all regions and all seasons) is found in the Southern Hemisphere (SH)'s polar region during austral spring. The seasonal average of cooling rates is comparable in the mid‐latitudes of Northern Hemisphere and SH. In the UA‐ICON simulations, the elevated stratopause events (ESEs) occur after major sudden stratospheric warmings (SSWs). ESEs frequency is 2 events per decade in UA‐ICON simulations. Our results show that the wind reversal is stronger and long‐lasting in the ESEs compared to SSW‐only events. In addition, the easterlies extend to the mesosphere in the composites of ESEs, but the reversed winds are limited to below 60 km in the case of SSW‐only events. We show that the non‐orographic gravity wave drag induces anomalous residual circulation after SSW that causes the ESEs. We also show that the ESEs form even in the absence of non‐orographic gravity wave drag. In this case, the anomalous residual circulation is due to the anomalously enhanced resolved wave forcing in the mesosphere that gives rise to the formation of the ESEs at about 85 km.
    Description: Key Points: The largest stratopause trend is found in the Southern Hemisphere polar region during austral springbased on Microwave Limb Sounder observations. The suppression of gravity waves in UA‐ICON reveals the importance of resolvedwaves and their ability to compensate missing drag. In the polar regions, the simulated stratopause is too warm and the tropical semi‐annual oscillation is about two months out of phase.
    Description: Deutsche Forschungsgemeinschaft
    Description: Transregional Collaborative Research Centre
    Description: GACR
    Description: MS‐GWaves
    Description: https://code.mpimet.mpg.de/projects/iconpublic
    Description: https://doi.org/10.26050/WDCC/UAICON_timesl_ctrl
    Description: https://doi.org/10.26050/WDCC/UAICON_timesl_nonon
    Description: https://doi.org/10.26050/WDCC/UAICON_timesl_nosso
    Keywords: ddc:551.5 ; gravity waves ; elevated stratopause ; middle atmosphere
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-21
    Description: Measurements of kinetic energy in vortical and divergent fluctuations in the mesosphere and lower thermosphere can be used to study stratified turbulence (ST) and gravity waves. This can be done using horizontal correlation functions of the fluctuating component of velocity. This study introduces a novel method for estimating these correlation functions using radars that observe Doppler shifts of ionized specular meteor trails. The technique solves the correlation functions directly on a longitudinal‐transverse‐up coordinate system, assuming axial symmetry. This procedure is more efficient and leads to smaller uncertainties than a previous approach. The new technique is applied to a year‐long data set from a multistatic specular meteor radar network in Germany, to study the annual variability of kinetic energy within turbulent fluctuations at 87–93 km of altitude. In monthly averages, the kinetic energy is found to be nearly equipartitioned between vortical and divergent modes. Turbulent fluctuations maximize during the winter months with approximately 25% more energy in these months than at other times. The horizontal correlation functions are in agreement with the inertial subrange of ST, exhibiting a 2/3 power law in the horizontal lag direction, with an outermost scale of ST to be about 380 km. This suggests that horizontal correlation functions could be used to estimate turbulent energy transfer rates.
    Description: Plain Language Summary: Flows exhibit a phenomenon called turbulence, which transfers energy from large scales into smaller scales. This effect is important to quantify the energy budget of the Earth's upper atmosphere. The range of length scales where this phenomenon occurs is called the inertial subrange of turbulence. The classical theory of isotropic turbulence predicts that this energy transfer occurs on length scales smaller than ∼100 m, at 60–110 km altitude. Recent work has shown that horizontal velocity fluctuations can extend the inertial subrange to length scales of up to hundreds of kilometers horizontally. This type of turbulence is called stratified turbulence (ST). So far no comprehensive study has been made to experimentally examine ST in the mesosphere and lower thermosphere (MLT) region on horizontal mesoscales. This study introduces a method for doing so by measuring how the wind fluctuations are correlated as a function of horizontal separation. This is achieved by using meteor radar measurements. The technique is applied to a year‐long data set over Germany. It is found that the MLT wind fluctuations are compatible with ST theory. The introduced method could potentially be used for routinely measuring how kinetic energy flows from large‐scale to small‐scale atmospheric fluctuations.
    Description: Key Points: A more efficient estimator for horizontal correlation functions is introduced. The rotational and divergent correlation functions of mesosphere and lower thermosphere wind fluctuations are found to be balanced at horizontal mesoscales. Horizontal correlations of wind fluctuations follow a 2/3‐power law for horizontal separations of up to 300–400 km.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: French Ministry of Foreign and European Affairs
    Description: Leibniz SAW project FORMOSA
    Keywords: ddc:551.5 ; mesosphere ; lower thermosphere ; wind fluctuations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-23
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉To understand the global response of thermospheric‐ionospheric (TI) parameters to variations in solar irradiance measurements from the Global‐Scale Observations of the Limb and Disk (GOLD) ultraviolet imaging spectrograph, solar radio flux F10.7, predictions from the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) model, and International Global Navigation Satellite System Service total electron content maps (TEC) have been used. Various parameters such as GOLD 〈italic〉O〈/italic〉/〈italic〉N〈/italic〉〈sub〉2〈/sub〉, 〈italic〉O〈/italic〉〈sub〉2〈/sub〉, and the nighttime peak electron density (Nmax) have been compared with the CTIPe model simulations. The GOLD observed Nmax shows a number of significant features including a winter anomaly and an equatorial ionization anomaly. The comparison with solar proxies showed that the GOLD 〈italic〉Q〈/italic〉〈sub〉〈italic〉EUV〈/italic〉〈/sub〉 correlates very well with the EUV observations compared to the F10.7 index. The study also examined the relationship between the solar proxies and Nmax on different time scales and found that Nmax responded significantly to 〈italic〉Q〈/italic〉〈sub〉〈italic〉EUV〈/italic〉〈/sub〉 at both medium‐ and long‐term timescales. Furthermore, a low correlation between Nmax in the equatorial region and solar proxies was found. A delayed ionospheric TEC response against solar flux variations within the 27‐day solar rotation was investigated. This ionospheric delay of TEC with respect to solar flux was observed to be less than 1 day, which was reproduced in model simulations. The current study has shown that the GOLD observations can be used to investigate the delayed ionospheric response and to gain a better understanding of the influence of solar activity on the TI system.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Ionospheric‐thermospheric parameters observed by Global‐Scale Observations of the Limb and Disk (GOLD) ultraviolet imaging spectrograph are compared with Coupled Thermosphere Ionosphere Plasmasphere electrodynamics model simulations〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The delayed ionospheric response against the solar flux is less than 1 day at the time scale of the 27 days solar rotation period〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The integrated 1–45 nm solar energy flux values observed by GOLD correlate well with the F10.7 and EUV〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: http://cddis.nasa.gov/Data_and_Derived_Products/GNSS/atmospheric_products.html
    Description: http://gold.cs.ucf.edu/search/
    Description: https://omniweb.gsfc.nasa.gov/form/dx1.html
    Description: https://lasp.colorado.edu/lisird/
    Description: http://guvitimed.jhuapl.edu/data/products
    Description: https://doi.org/10.5281/zenodo.8145356
    Keywords: ddc:538.7 ; CTIPe model ; O/N2 ratio ; ionospheric delay ; solar activity ; thermosphere‐ionosphere ; GOLD
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-18
    Description: Cities are at the forefront of European and international climate action. However, in many cities, the ever-growing urban population is putting pressure on settlement and infrastructure development, increasing attention to urban planning, infrastructure and buildings. This paper introduces a set of quantification approaches, capturing impacts of urban planning measures in three fields of action: sustainable building, transport and redensification. The quantification approaches have been developed to account for different levels of data availability, thus providing users with quantification approaches that are applicable across cities. The mitigation potentials of various measures such as a modal shift, the substitution of building materials with wood, and different redensification scenarios were calculated. The substitution of conventional building materials with wood was analyzed as having a high mitigation potential. Building construction, in combination with urban planning and design, are key drivers for mitigating climate change in cities. Given the data heterogeneity among cities, mixed quantification approaches could be defined and the measures and policy areas with the greatest climate mitigation potential identified.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The North Pacific (NP) is an essential component of the global climate system as it acts as a significant natural carbon sink and neutralizes a part of the anthropogenic release of CO2. The efficiency of the NP carbon sink depends on a range of variable factors, including gyre circulation, the wind system, influences from tropical and subpolar regions, and internal reorganizations like stratification changes. Thus, a detailed investigation of the NP ocean-climate system of the past is crucial to understand how the ongoing climate change influences this region and will affect future global climate. This thesis, presents proxy records approximating (sub)-surface temperature (foraminiferal Mg/Ca), salinity (combined Mg/Ca and δ18), biological productivity (XRF based element ratios, CaCO3 content and alkenone concentrations) and terrigenous input via wind (XRF-based Fe) from a unique set of six sediment cores from a meridional transect from Hess Rise to the subarctic NP retrieved during R/V SONNE expeditions 202 and 264. The records reveal significantly different upper ocean conditions and a different productivity pattern in the western NP during the Pliocene than during the Pleistocene. This is associate with the intensification of Northern Hemisphere Glaciation, the onset of a permanent halocline and increased seasonality. Further, a different productivity and carbonate deposition/dissolution pattern of records south of 40°N compared to northern cores is linked to different nutrient regimes of the subtropical and subpolar gyre. Moreover, abrupt and pronounced changes in SST at site SO264-45 (e.g. at 480 ka and 280 ka) indicate shifts of the Subarctic Front induced by changes in the strength of the Kuroshio Extension, e.g., caused by sustained La Niña-like conditions in the tropical Pacific.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The subarctic front (SAF) in the pelagic North Pacific is the northernmost front of the Kuroshio-Oyashio transition zone separating the subpolar and subtropical gyres and is marked by a strong sea surface temperature gradient. A complex interplay of e.g. variations of currents, the wind system and other forcing mechanisms causes shifts of the SAF’s position on timescales from orbital to interannual. In this study, we present proxy data from the Emperor Seamount chain, which reveal a link between long-term ENSO (El Niño/Southern Oscillation) dynamics in the tropics and shifts of the SAF. Based on sediment core SO264-45-2 from Jimmu Seamount (46°33.792’N, 169°36.072’E) located close to the modern position of the SAF, we reconstruct changes in (sub)surface temperature ((sub)SST Mg/Ca ) and δ 18 O sw-ivc (approximating salinities) via combined Mg/Ca and δ 18 O analyses of the shallow-dwelling foraminifera Globigerina bulloides and the near-thermocline-dwelling Neogloboquadrina pachyderma , biological productivity (XRF-based Ba/Ti ratios), and terrigenous input via dust (XRF-based Fe). From ~600 to ~280 ka BP we observe significantly higher SST Mg/Ca than after an abrupt change at 280 ka BP. We assume that during this time warmer water from the Kuroshio-Oyashio transition zone reached the core site, reflecting a shift of the SAF from a position at or even north of our study site prior to 280 ka BP to a position south of our study site after 280 ka BP. We propose that such a northward displacement of the SAF between 600-280 ka BP was induced by sustained La Niña-like conditions, which led to increased transport of tropical ocean heat into the Kuroshio-Oyashio transition zone via the Kuroshio Current. After ~280 ka BP, the change to more El Niño-like conditions led to less heat transfer via the Kuroshio Current with the SAF remaining south of the core location. In contrast, our productivity record shows a clear glacial-interglacial pattern that is common in the North Pacific. We assume that this pattern is connected to changes in nutrient supply or utilization, which are not primarily driven by changes of the Kuroshio and Oyashio Currents or the SAF.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...